

报告编号: 22G01019C1 页码: 1/44

检测报告

江苏微谱检测技术有限公司

报告编号: 22G01019C1 页码: 2/44

检测报告

44									
江苏永之清固废处置有限公司									
江苏省苏州市常熟市常熟经济开发	L苏省苏州市常熟市常熟经济开发区长春路 102 号								
江苏永之清固废处置有限公司									
江苏省苏州市常熟市常熟经济开发	区长春路 102 号								
2022 年 3 季度委托检测	A III.								
2022年7月15日~7月20日 枚	2022年7月16日∼8月1日								
1 Still									
	江苏省苏州市常熟市常熟经济开发 江苏永之清固废处置有限公司 江苏省苏州市常熟市常熟经济开发 2022年3季度委托检测								

编	制:	A lifeto
审	核:	
批	准:	
签发	日期:	

报告编号: 22G01019C1 页码: 3/44

1.检测结果:

1.1 废水

	检测结果	:(2022年7月	月20日)	A life to II		
检测项目		废水总排口	<u>ال</u> ان بين	接管标准	检出限	单位
	第一次	第二次	第三次			
рН	7.4 (25°C)	7.3 (25°C)	7.3 (25°C)	6-9	Illigi	无量纲
氨氮	13.6	13.9	14.1	≤40	0.025	mg/L
悬浮物	11/1/27	4	6	≤250	4	mg/L
总磷	0.32	0.31	0.31	≤6	0.01	mg/L
化学需氧量	35.4	34.8	34.0	≤500	4	mg/L
五日生化需氧量	14.4	14.7	15.0	≤150	0.5	mg/L
磷酸盐	0.12	0.12	0.13	≤6	0.01	mg/L
A Million					A Like	

	检测结果	:(2022年7月	月20日)	GB 8978-1996		D'
检测项目		废水总排口		污水综合排放	检出限	单位
	第一次	第二次	第三次	标准 表 1	8	WE FOR
砷	1.76×10 ⁻²	1.75×10 ⁻²	1.92×10 ⁻²	0.5	3×10 ⁻⁴	mg/L
汞	4.8×10 ⁻⁴	3.8×10 ⁻⁴	3.5×10 ⁻⁴	0.05	4×10-5	mg/L
镉	ND	ND 🐉	ND	0.1	0.01	mg/L
铅	ND	ND	ND	1.0	0.05	mg/L
六价铬	ND D	ND	ND	0.5	0.004	mg/L
铬[1]	ND	ND	ND	1.5	0.004	mg/L

检测项目	. 20%	(2022 年 7 <i>)</i> 废水总排口	月20日)	GB 8978-1996 污水综合排放	检出限	单位
	第一次	第二次	第三次	标准 表 4 三级		A lifeth
氟化物	12.4	12.3	11.8	20	0.05	mg/L
总氮	19.2	19.3	19.6		0.05	mg/L
总余氯 (总氯)	0.05	0.05	0.05		0.004	mg/L
石油类	0.09	0.09	0.11	20	0.06	mg/L

本页完

报告编号: 22G01019C1 页码: 4/44

164.62									
检测项目	A THE	(2022年7) 国座水排口C	<u> </u>	GB 8978-1996 污水综合排放	检出限	单位			
124000000000000000000000000000000000000	车间废水排口 CJ001			标准 表 1	业山界	平世			
A life it	第一次	第二次	第三次	你但 衣 1	A THE LEW	alle.			
砷	1.90×10 ⁻²	2.75×10 ⁻²	2.20×10 ⁻²	0.5	3×10 ⁻⁴	mg/L			
汞	1.92×10 ⁻²	2.50×10 ⁻²	2.34×10 ⁻²	0.05	4×10 ⁻⁵	mg/L			
镉	ND	ND	ND	0.1	0.01	mg/L			
铅	ND	ND	ND	1.0	0.05	mg/L			
六价铬	ND	ND	ND	0.5	0.004	mg/L			
铬[2]	ND	ND	ND	1.5	0.03	mg/L			

注: 1. "ND"表示未检出。

2.执行标准及接管标准由客户提供。

3. "--"表示在《GB 8978-1996 污水综合排放标准》表 4 三级中未对该项目作限制。

报告编号: 22G01019C1 页码: 5 /44

1.2 废气(无组织)

		检测	则结果(2022	2年7月15	目)	GB14554-1993	A line	34 (2-
检测项目	采样频次	厂界下风 向 G1	厂界下风 向 G2	厂界下风 向 G3	厂界下风 向 G4	恶臭污染物排 放标准 表 1	检出限	单位
	第一次	0.03	0.04	0.05	0.04	l.	0.01	mg/m ³
复	第二次	0.03	0.04	0.04	0.05	1.5	0.01	mg/m ³
氨	第三次	0.03	0.04	0.04	0.05	1.5	0.01	mg/m ³
	第四次	0.03	0.04	0.04	0.05		0.01	mg/m ³
	第一次	ND	ND	ND	ND	A William	0.001	mg/m ³
かりた	第二次	ND	ND	ND	ND	0.06	0.001	mg/m ³
硫化氢	第三次	ND	ND ND	ND	ND	0.06	0.001	mg/m ³
	第四次	ND	ND	ND	ND		0.001	mg/m ³
	第一次	15	15	16	15	I I I I I I I I I I I I I I I I I I I	25 Juli	无量纲
自尽协成	第二次	17	16	15	15	20		无量纲
臭气浓度	第三次	15	15	17	17			无量纲
EIPEL .	第四次	15	17	16	17			无量纲

A MILET E	IV 4 V	检测	划结果(2022	2年7月15	日)	DB32/4041-2021	₩ 117F	
检测项目	采样频次	厂界下风 向 G1	厂界下风 向 G2	厂界下风 向 G3	厂界下风 向 G4	大气污染物综 合排放标准	检出限	单位
	第一次	0.034	0.034	0.034	0.034	Life Per	0.02	mg/m ³
氯化氢	第二次	0.034	0.033	0.035	0.034	0.05	0.02	mg/m ³
	第三次	0.034	0.033	0.034	0.034	A literal	0.02	mg/m³
A THE LOW	第一次	0.139	0.139	0.174	0.157	William Comments	0.001	mg/m ³
颗粒物	第二次	0.157	0.157	0.140	0.140	0.5	0.001	mg/m ³
A William	第三次	0.158	0.140	0.158	0.175	A William	0.001	mg/m ³
>	第一次	1.0×10 ⁻³	9×10 ⁻⁴	1.1×10 ⁻³	1.0×10 ⁻³		5×10 ⁻⁴	mg/m ³
氟化物	第二次	1.1×10 ⁻³	1.0×10 ⁻³	1.0×10 ⁻³	1.1×10 ⁻³	0.02	5×10 ⁻⁴	mg/m³
	第三次	1.1×10 ⁻³	1.1×10 ⁻³	1.0×10 ⁻³	9×10 ⁻⁴		5×10 ⁻⁴	mg/m ³

报告编号: 22G01019C1 页码: 6/44

W.		The line					-		
			检测结果(2022年7月15日)					e le	
检测项目	采样频次	厂界下风 向 G1	厂界下风 向 G2	厂界下风 向 G3	厂界下风 向 G4	厂区内焚 烧车间门 口	大气污染物综 合排放标准	检出限	单位
	第一次	0.84	0.84	0.85	0.88	0.83	Alling	0.07	mg/m³
	第二次	0.82	0.85	0.82	0.86	0.88		0.07	mg/m ³
非甲烷总 烃	第三次	0.87	0.88	0.84	0.89	0.86	4	0.07	mg/m³
Lie	第四次	0.86	0.87	0.86	0.88	0.86	A William	0.07	mg/m ³
	均值	0.85	0.86	0.84	0.88	0.86		0.07	mg/m ³

注: 1."ND"表示未检出。

2.执行标准由客户提供。

本页完

WY TE

报告编号: 22G01019C1 页码: 7/44

1.3 废气(有组织)

			结果(202)	2年7月18	用)。	GB	A THE	1021
12.50			- 1 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5度: 80m	A like in	18484-2020 危	I.A I PIPE	36.03
检测	检测项目		吨/年回转备	京焚烧项目(Q1)	险废物焚烧污 染控制标准	检出限	単位
			第一次 第二次 第三次 平均值					
	实测浓度	3	ND	ND	ND		3	mg/m ³
二氧化硫	折算浓度	3	ND	ND	ND	100		mg/m ³
A MEIN	排放速率	5.72×10 ⁻²	/	1	/	A lille lett		kg/h
	实测浓度	104	120	98	107		3	mg/m ³
氮氧化物	折算浓度	93	105	88	95	300		mg/m ³
123	排放速率	1.98	2.31	1.87	2.06	La lilent		kg/h
1	实测浓度	ND	ND N	ND	ND		3	mg/m ³
一氧化碳	折算浓度	ND	ND	ND	ND	100		mg/m ³
	排放速率	1 🔊	I I	1/	/			kg/h
A Tillier	实测浓度	4.3	5.5	9.9	6.6	Alling	1.0	mg/m ³
颗粒物	折算浓度	3.8	4.8	8.9	5.8	30	2 lill le	mg/m ³
Ĭ <i>Ĭ</i>	排放速率	8.20×10 ⁻²	0.106	0.189	0.101			kg/h
A Price	实测浓度	13.4	13.3	13.5	13.4	A This is a	0.2	mg/m ³
氯化氢	折算浓度	22.3	20.8	24.1	22.4	60		mg/m ³
	排放速率	0.262	0.255	0.264	0.260	_{(***}	#	kg/h
, effic	实测浓度	ND	ND	ND	ND		0.08	mg/m ³
氟化氢	折算浓度	ND	ND	ND	ND	4.0		mg/m ³
	排放速率	/		/	/		2 - 1 1 1 1 1 1 1 1 1 1	kg/h

本页完

WY IE

报告编号: 22G01019C1 页码: 8/44

437	EL .	-64		A STATE OF THE PARTY OF THE PAR	.00	IS NOW			
		松	验测结果(2022	年7月18日)	A	GB			
松湖江	e in the second		排气筒高	18484-2020	检出限	单位			
检测功	贝日	90	00 吨/年回转窑	危险废物焚 烧污染控制					
Airin		第一次	第二次	第二次第三次		标准			
	实测浓度	ND	3.94×10 ⁻⁴	ND	ND	(3)	3×10 ⁻⁴	mg/m ³	
锡	折算浓度	ND	6.91×10 ⁻⁴	ND	ND	<u></u>		mg/m ³	
3	排放速率		7.73×10 ⁻⁶	/	/		A There's	kg/h	
	实测浓度	ND	ND	ND ND	ND		2×10 ⁻⁵	mg/m ³	
锑	折算浓度	ND	ND 🎤	ND ND	ND		(2)	mg/m ³	
E. E. II	排放速率	/		/	As in the second	[11]		kg/h	
	实测浓度	1.13×10 ⁻³	2.21×10 ⁻³	9.29×10 ⁻⁴	1.42×10 ⁻³		2×10 ⁻⁴	mg/m ³	
铜	折算浓度	1.95×10 ⁻³	3.88×10 ⁻³	1.72×10 ⁻³	2.52×10 ⁻³			mg/m ³	
	排放速率	2.22×10 ⁻⁵	4.34×10 ⁻⁵	1.83×10 ⁻⁵	2.80×10 ⁻⁵	ur ill		kg/h	
- 20%	实测浓度	4.60×10 ⁻⁴	6.02×10 ⁻³	6.12×10 ⁻⁴	2.36×10 ⁻³	A line	7×10 ⁻⁵	mg/m ³	
锰	折算浓度	7.93×10 ⁻⁴	1.06×10 ⁻²	1.13×10 ⁻³	4.16×10 ⁻³	ut ill		mg/m ³	
. The	排放速率	9.03×10 ⁻⁶	1.18×10 ⁻⁴	1.20×10 ⁻⁵	4.63×10 ⁻⁵	A like		kg/h	
A fill low	实测浓度	9.56×10 ⁻⁴	1.08×10 ⁻²	1.06×10 ⁻³	4.27×10 ⁻³		1×10-4	mg/m ³	
镍	折算浓度	1.65×10 ⁻³	1.89×10 ⁻²	1.96×10 ⁻³	7.52×10 ⁻³	1	A VIEW	mg/m ³	
8	排放速率	1.88×10 ⁻⁵	2.12×10 ⁻⁴	2.08×10 ⁻⁵	8.39×10 ⁻⁵	All IELL		kg/h	
	实测浓度	7.76×10 ⁻⁴	7.76×10 ⁻⁴	6.18×10 ⁻⁴	7.23×10 ⁻⁴		8×10-6	mg/m ³	
钴	折算浓度	1.34×10 ⁻³	1.36×10 ⁻³	1.14×10 ⁻³	1.28×10 ⁻³			mg/m ³	
	排放速率	1.52×10 ⁻⁵	1.52×10 ⁻⁵	1.22×10 ⁻⁵	1.42×10 ⁻⁵			kg/h	
锡+锑+铜+	折算浓度	5.73×10 ⁻³	3.54×10 ⁻²	5.96×10 ⁻³	1.57×10 ⁻²	2.0		mg/m ³	
锰+镍+钴	排放速率	6.52×10 ⁻⁵	3.96×10 ⁻⁴	6.33×10 ⁻⁵	1.75×10 ⁻⁴	- Hill		mg/m ³	
	实测浓度	ND	ND	ND	ND		8×10 ⁻⁶	kg/h	
铊	折算浓度	ND	ND	ND	ND	0.05		mg/m ³	
. 11L	排放速率	1		Aijii .	/		(mg/m ³	

报告编号: 22G01019C1 页码: 9/44

				Lieu Line			1	
e.	»·	A ELLE	金测结果(202 2	2年7月18日)		GB	A life is the	
检测巧	新 日 常道		排气筒高	18484-2020 危险废物焚	检出限	単位		
位侧片	火日	90	000 吨/年回转窑	^{危险废物炎} 烧污染控制		半 型		
A filition			第一次 第二次 第三次 均值		标准	15.3		
	实测浓度	ND	ND	ND	ND	(B)	8×10 ⁻⁶	mg/m ³
	折算浓度	折算浓度 ND ND	ND	ND ND			mg/m ³	
	排放速率		A intilla	/	/		A link in	kg/h
	实测浓度	7.30×10 ⁻⁴	1.08×10 ⁻³	5.59×10 ⁻⁴	7.90×10 ⁻⁴	A lilia	2×10 ⁻⁴	mg/m ³
铅	折算浓度	1.26×10 ⁻³	1.89×10 ⁻³	1.04×10 ⁻³	1.40×10 ⁻³	0.5	(S)	mg/m ³
F-12	排放速率	1.43×10 ⁻⁵	2.12×10 ⁻⁵	1.10×10 ⁻⁵	1.55×10 ⁻⁵			kg/h
	实测浓度	7.28×10 ⁻⁴	6.96×10 ⁻⁴	5.02×10 ⁻⁴	6.42×10 ⁻⁴		2×10 ⁻⁴	mg/m ³
砷	折算浓度	1.26×10 ⁻³	1.22×10 ⁻³	9.30×10 ⁻⁴	1.14×10 ⁻³	0.5		mg/m ³
	排放速率	1.43×10 ⁻⁵	1.37×10 ⁻⁵	9.87×10 ⁻⁶	1.26×10 ⁻⁵	or its		kg/h
- 205	实测浓度	7.87×10 ⁻⁴	2.92×10 ⁻³	9.93×10 ⁻⁴	1.57×10 ⁻³	The same	3×10 ⁻⁴	mg/m ³
铬	折算浓度	1.36×10 ⁻³	5.12×10 ⁻³	1.84×10 ⁻³	2.77×10 ⁻³	0.5		mg/m ³
a Alice	排放速率	1.55×10 ⁻⁵	5.73×10 ⁻⁵	1.95×10 ⁻⁵	3.08×10 ⁻⁵	A life had		kg/h
A little	实测浓度	4.6×10 ⁻⁴	4.0×10 ⁻⁴	3.5×10 ⁻⁴	4.0×10 ⁻⁴		3×10 ⁻⁵	mg/m ³
汞	折算浓度	7.7×10 ⁻⁴	6.2×10 ⁻⁴	6.2×10 ⁻⁴	6.7×10 ⁻⁴	0.05		mg/m ³
E	排放速率	9.00×10 ⁻⁶	7.68×10 ⁻⁶	6.85×10 ⁻⁶	7.84×10 ⁻⁶			kg/h
		10 11 Em		AGE .				413

NEW THE

报告编号: 22G01019C1 页码: 10/44

Allie		检测	划结果(2022	2年7月18	日)	GB		
			排气筒高	i度: 80m		18484-2020 危	Day:	
检测	项目	12000	吨/年回转智	B焚烧项目((Q2)	险废物焚烧污	检出限	単位
(A)		第一次	第二次	第三次	平均值	染控制标准 表 3		A WALLE
APL.	实测浓度	ND	ND	ND	ND		3	mg/m ³
二氧化硫	折算浓度	ND	ND	ND	ND	100	WEIGHT.	mg/m ³
	排放速率	1	/	A SELLE	/			kg/h
E LIE	实测浓度	32	39	40	37	A HERE	3	mg/m ³
氮氧化物	折算浓度	56	83	87	75	300	120	mg/m ³
	排放速率	0.596	0.722	0.743	0.687	141 181		kg/h
	实测浓度	ND	ND	ND	ND		3	mg/m ³
一氧化碳	折算浓度	ND	ND	ND	ND	100		mg/m ³
	排放速率	1		/	1	25	Aleni	kg/h
	实测浓度	13.7	13.0	12.7	13.1		1.0	mg/m ³
颗粒物	折算浓度	24.0	27.7	27.6	26.4	30	;	mg/m ³
	排放速率	0.255	0.241	0.236	0.244		A Lien	kg/h
البيرية	实测浓度	15.5	15.5	15.5	15.5		0.2	mg/m ³
氯化氢	折算浓度	27.2	33.0	33.7	31.3	60		mg/m ³
>	排放速率	0.289	0.287	0.288	0.288			kg/h
	实测浓度	ND	ND	ND	ND	<u>"</u>	0.08	mg/m ³
氟化氢	折算浓度	ND	ND	ND	ND	4.0		mg/m³
THE POLI	排放速率	/	/		/	Jillian		kg/h

报告编号: 22G01019C1 页码: 11/44

	OL S	大	企测结果(2022	年7月18日)	B	GB					
			排气筒高	度: 80m		18484-2020					
检测工	页目	120	000 吨/年回转窑	F焚烧项目(Qź	2)	危险废物焚 烧污染控制	変物焚 染控制 ※推 3×10 ⁻⁴ mg/m³ 3×10 ⁻⁵ mg/m³ 2×10 ⁻⁵ mg/m³ mg/m³ 2×10 ⁻⁴ mg/m³				
Airin		第一次	第二次	第三次	均值	标准	3×10 ⁻⁴ 2×10 ⁻⁵ 2×10 ⁻⁴	hale.			
	实测浓度	4.45×10 ⁻³	3.00×10 ⁻³	2.49×10 ⁻³	3.31×10 ⁻³	(3)	3×10 ⁻⁴	mg/m ³			
锡	折算浓度	1.09×10 ⁻²	5.77×10 ⁻³	4.53×10 ⁻³	7.05×10 ⁻³		- : :15	mg/m ³			
3	排放速率	8.27×10 ⁻⁵	5.61×10 ⁻⁵	4.72×10 ⁻⁵	6.20×10 ⁻⁵		A Line	kg/h			
	实测浓度	1.98×10 ⁻²	1.13×10 ⁻²	1.20×10 ⁻²	1.44×10 ⁻²		2×10 ⁻⁵	mg/m ³			
锑	折算浓度	4.83×10 ⁻²	2.17×10 ⁻²	2.18×10 ⁻²	3.06×10 ⁻²		(2)	mg/m ³			
i kultur	排放速率	3.68×10 ⁻⁴	2.11×10 ⁻⁴	2.27×10 ⁻²	7.76×10 ⁻³	[[]]		kg/h			
	实测浓度	5.15×10 ⁻³	3.61×10 ⁻³	4.79×10 ⁻³	4.52×10 ⁻³		2×10 ⁻⁴	mg/m ³			
铜	折算浓度	1.26×10 ⁻²	6.94×10 ⁻³	8.71×10 ⁻³	9.40×10 ⁻³			mg/m ³			
	排放速率	9.58×10 ⁻⁵	6.76×10 ⁻⁵	9.08×10 ⁻⁵	8.47×10 ⁻⁵			kg/h			
- 20-	实测浓度	3.68×10 ⁻⁴	2.09×10 ⁻⁴	2.87×10 ⁻⁴	2.88×10 ⁻⁴	A literature	7×10 ⁻⁵	mg/m ³			
锰	折算浓度	8.98×10 ⁻⁴	4.02×10 ⁻⁴	5.22×10 ⁻⁴	6.07×10 ⁻⁴	<u></u>		mg/m ³			
-10-	排放速率	6.84×10 ⁻⁶	3.91×10 ⁻⁶	5.44×10 ⁻⁶	5.40×10 ⁻⁶	A life in a		kg/h			
A little love	实测浓度	1.48×10 ⁻³	1.15×10 ⁻³	7.45×10 ⁻⁴	1.13×10 ⁻³		1×10 ⁻⁴	mg/m ³			
镍	折算浓度	3.61×10 ⁻³	2.21×10 ⁻³	1.35×10 ⁻³	2.39×10 ⁻³	8		mg/m ³			
8	排放速率	2.75×10 ⁻⁵	2.15×10 ⁻⁵	1.41×10 ⁻⁵	2.10×10 ⁻⁵	Milieu-		kg/h			
	实测浓度	3.44×10 ⁻⁴	1.20×10 ⁻³	1.18×10 ⁻³	9.08×10 ⁻⁴		8×10-6	mg/m ³			
钴	折算浓度	8.39×10 ⁻⁴	2.31×10 ⁻³	2.15×10 ⁻³	1.76×10 ⁻³	A life in		mg/m ³			
A William	排放速率	6.40×10 ⁻⁶	2.25×10 ⁻⁵	2.24×10 ⁻⁵	1.71×10 ⁻⁵			kg/h			
锡+锑+铜+	折算浓度	7.71×10 ⁻²	3.94×10 ⁻²	3.91×10 ⁻²	5.18×10 ⁻²	2.0		mg/m ³			
锰+镍+钴	排放速率	5.87×10 ⁻⁴	3.83×10 ⁻⁴	2.29×10 ⁻²	7.95×10 ⁻³			mg/m ³			
	实测浓度	ND	ND	ND	ND		8×10 ⁻⁶	kg/h			
铊	折算浓度	ND	ND	ND	ND	0.05		mg/m ³			
, 10.	排放速率	/ A!!	1	Ni N	/	E lieu	(mg/m ³			

报告编号: 22G01019C1 页码: 12/44

	PELL			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
ar.	<i>y</i>	本 調道 木	益测结果(202 2	2年7月18日)	B.	GB		
检测工	66 H. W. J.		排气筒高		18484-2020	松山阳	X &	
位列	坝日	120)00 吨/年回转智	B焚烧项目(Q2	2)	危险废物焚 烧污染控制	位出限	单位
Alligh		第一次	第二次	第三次	均值	标准	123	
	实测浓度	ND	ND	ND	ND	B	8×10-6	mg/m ³
镉	折算浓度	ND	ND	ND	ND	0.05		mg/m ³
	排放速率		A life lieu	/	/		2×10 ⁻⁴	kg/h
	实测浓度	8.23×10 ⁻³	5.44×10 ⁻³	6.43×10 ⁻³	6.70×10 ⁻³	Nii ji	2×10 ⁻⁴	mg/m ³
铅	折算浓度	2.01×10 ⁻²	1.05×10 ⁻²	1.17×10 ⁻²	1.41×10 ⁻²	0.5	(A)	mg/m ³
in the same of the	排放速率	1.53×10 ⁻⁴	1.02×10 ⁻⁴	1.22×10 ⁻⁴	1.26×10 ⁻⁴	[2×10 ⁻⁴	kg/h
	实测浓度	9.98×10 ⁻⁴	6.65×10 ⁻⁴	6.65×10 ⁻⁴	7.76×10 ⁻⁴		2×10 ⁻⁴	mg/m ³
砷	折算浓度	2.43×10 ⁻³	1.28×10 ⁻³	1.21×10 ⁻³	1.64×10 ⁻³	0.5		mg/m ³
	排放速率	1.86×10 ⁻⁵	1.24×10 ⁻⁵	1.26×10 ⁻⁵	1.45×10 ⁻⁵			kg/h
- AC	实测浓度	1.04×10 ⁻³	6.94×10 ⁻⁴	7.28×10 ⁻⁴	8.21×10 ⁻⁴	A literal	3×10 ⁻⁴	mg/m ³
铬	折算浓度	2.54×10 ⁻³	1.33×10 ⁻³	1.32×10 ⁻³	1.73×10 ⁻³	0.5		mg/m ³
, eller	排放速率	1.93×10 ⁻⁵	1.30×10 ⁻⁵	1.38×10 ⁻⁵	1.54×10 ⁻⁵	A fill had		kg/h
Allitation	实测浓度	2.1×10 ⁻⁴	3.6×10 ⁻⁴	5.4×10 ⁻⁴	3.7×10 ⁻⁴		3×10 ⁻⁵	mg/m ³
汞	折算浓度	7.2×10 ⁻⁴	8.4×10 ⁻⁴	1.2×10 ⁻³	9.2×10 ⁻⁴	0.05		mg/m ³
A	排放速率	3.85×10 ⁻⁶	6.65×10 ⁻⁶	1.01×10 ⁻⁵	6.87×10 ⁻⁶			kg/h
		AN 11/6"		3734		AND THE PERSON NAMED IN COLUMN TO SERVICE AND THE PERSON NAMED IN COLUMN	027.7	45

本负完

NEW THE

报告编号: 22G01019C1 页码: 13 /44

A River	A.	检测	结果(2022	2年7月18	目)	GB	i i i	
1 A		-	排气筒高	度: 80m	ar i iii.	18484-2020 危	(As live)
检测	项目	12000	吨/年回转智		(Q3)	险废物焚烧污 染控制标准	检出限	单位
		第一次	第二次	第三次	平均值	表 表 3		
200	实测浓度	ND	ND	ND	ND		3	mg/m ³
二氧化硫	折算浓度	ND	ND	ND	ND	100	WE IS	mg/m ³
	排放速率	1	/	A THE ILE	/			kg/h
	实测浓度	146	132	107	128	A litera-	3	mg/m ³
氮氧化物	折算浓度	203	169	135	169	300	120 m	mg/m ³
	排放速率	2.40	2.21	1.83	2.15	14/11/1		kg/h
	实测浓度	18	12	7	12	<u> </u>	3	mg/m ³
一氧化碳	折算浓度	25	15	9	16	100		mg/m ³
	排放速率	0.30	0.20	0.12	0.21	25	A LEBEL	kg/h
	实测浓度	4.0	4.2	4.0	4.1		1.0	mg/m ³
颗粒物	折算浓度	5.6	5.4	5.1	5.3	30		mg/m ³
	排放速率	6.58×10 ⁻²	7.05×10 ⁻²	6.85×10 ⁻²	6.83×10 ⁻²		An line in	kg/h
	实测浓度	2.18	2.22	2.19	2.20		0.2	mg/m ³
氯化氢	折算浓度	3.03	2.85	2.81	2.89	60		mg/m ³
	排放速率	3.59×10 ⁻²	3.72×10 ⁻²	3.67×10 ⁻²	3.66×10 ⁻²			kg/h
	实测浓度	1.67	1.74	1.72	1.71	(#	0.08	mg/m ³
氟化氢	折算浓度	2.32	2.23	2.21	2.25	4.0		mg/m³
THE TOTAL	排放速率	2.75×10 ⁻²	2.92×10 ⁻²	2.89×10 ⁻²	2.85×10 ⁻²		::S	kg/h

报告编号: 22G01019C1 页码: 14/44

	i i	, 4Th.		12 rate	(%	N.20		
		A William A	检测结果(2022	年7月18日		GB	A Little	
检测巧	而日常 ^注	VIIII	排气筒高	度: 80m		18484-2020 危险废物焚	松山阳	単位
企业	火日	120	000 吨/年回转窑	F焚烧项目(Q	3)	危险废物炎 烧污染控制	1型 正 PR	半世
A life in the		第一次	第二次	第三次	均值	标准	松出限 3×10 ⁻⁴ 2×10 ⁻⁵ 2×10 ⁻⁴ 7×10 ⁻⁵ 1×10 ⁻⁴ 8×10 ⁻⁶ 8×10 ⁻⁶	
	实测浓度	ND	ND	ND	ND	(3	3×10 ⁻⁴	mg/m³
锡	折算浓度	ND	ND	ND	ND	<u></u>	<u></u>	mg/m ³
3	排放速率			/	/		A The state of the	kg/h
	实测浓度	ND	ND	ND D	ND	S. III.	2×10 ⁻⁵	mg/m ³
锑	折算浓度	ND	ND	ND	ND		(3)	mg/m ³
P. P. P.	排放速率	1		/	A HE	- #	·	kg/h
	实测浓度	3.00×10 ⁻⁴	ND	3.59×10 ⁻⁴	2.20×10 ⁻⁴		2×10 ⁻⁴	mg/m ³
铜	折算浓度	3.95×10 ⁻⁴	ND	4.54×10 ⁻⁴	2.83×10 ⁻⁴			mg/m ³
	排放速率	5.18×10 ⁻⁶		5.97×10 ⁻⁶	3.72×10 ⁻⁶	ur ill		kg/h
. etc.	实测浓度	4.87×10 ⁻⁴	2.37×10 ⁻⁴	7.51×10 ⁻⁴	4.92×10 ⁻⁴	E like	7×10 ⁻⁵	mg/m ³
锰	折算浓度	6.41×10 ⁻⁴	2.96×10 ⁻⁴	9.51×10 ⁻⁴	6.29×10 ⁻⁴	 		mg/m ³
e Mile	排放速率	8.41×10 ⁻⁶	4.13×10 ⁻⁶	1.25×10 ⁻⁴	4.58×10 ⁻⁵	A like		kg/h
A fill low	实测浓度	2.50×10 ⁻³	1.09×10 ⁻³	1.59×10 ⁻³	1.73×10 ⁻³		1×10-4	mg/m ³
镍	折算浓度	3.29×10 ⁻³	1.36×10 ⁻³	2.01×10 ⁻³	2.22×10 ⁻³	1	A VIEW	mg/m ³
8	排放速率	4.32×10 ⁻⁵	1.90×10 ⁻⁵	2.64×10 ⁻⁵	2.95×10 ⁻⁵	Military Comments		kg/h
	实测浓度	9.54×10 ⁻⁴	3.51×10 ⁻⁴	2.32×10 ⁻³	1.21×10 ⁻³		8×10-6	mg/m ³
钴	折算浓度	1.26×10 ⁻³	4.39×10 ⁻⁴	2.94×10 ⁻³	1.54×10 ⁻³			mg/m ³
	排放速率	1.65×10 ⁻⁵	6.11×10 ⁻⁶	3.86×10 ⁻⁵	2.04×10 ⁻⁵			kg/h
锡+锑+铜+	折算浓度	5.58×10 ⁻³	2.10×10 ⁻³	6.35×10 ⁻³	4.68×10 ⁻³	2.0		mg/m ³
锰+镍+钴	排放速率	7.33×10 ⁻⁵	2.92×10 ⁻⁵	1.96×10 ⁻⁴	9.95×10 ⁻⁵	##iii		mg/m ³
	实测浓度	ND	ND	ND	ND		8×10 ⁻⁶	kg/h
铊	折算浓度	ND	ND	ND	ND	0.05		mg/m ³
. 11	排放速率	/ A.	1		/		4	mg/m ³

报告编号: 22G01019C1 页码: 15 /44

				A Lieu						
. Lie		大照道	捡测结果(202 2	2年7月18日)		GB				
- ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	# H # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		排气筒高	度: 80m	THE LEE	18484-2020				
检测工	火日	120)00 吨/年回转額	E焚烧项目(Q	3)	危险废物焚 烧污染控制	位出限	单位		
Alligie		第一次	第二次	第三次	均值	标准	松出限 8×10 ⁻⁶ 2×10 ⁻⁴ 3×10 ⁻⁴ 3×10 ⁻⁵			
	实测浓度	ND	ND	ND	ND	B	8×10-6	mg/m ³		
镉	折算浓度	ND	ND	ND	ND	0.05	<u></u>	mg/m ³		
	排放速率		A like line	/	/		A link in	kg/h		
	实测浓度	3.45×10 ⁻⁴	ND	3.31×10 ⁻⁴	2.25×10 ⁻⁴		2×10 ⁻⁴	mg/m ³		
铅	折算浓度	4.54×10 ⁻⁴	ND	4.19×10 ⁻⁴	2.91×10 ⁻⁴	0.5	\(\rightarrow\)	mg/m ³		
L. L.	排放速率	5.96×10 ⁻⁶		5.50×10 ⁻⁶	3.82×10 ⁻⁶			kg/h		
	实测浓度	ND	ND	ND	ND		2×10 ⁻⁴	mg/m ³		
砷	折算浓度	ND	ND	ND	ND	0.5		mg/m ³		
.00	排放速率	/		/	1 / I			kg/h		
. 15 <u>.</u>	实测浓度	5.56×10 ⁻³	1.86×10 ⁻³	2.73×10 ⁻³	3.38×10 ⁻³	A Life	3×10 ⁻⁴	mg/m ³		
铬	折算浓度	7.32×10 ⁻³	2.33×10 ⁻³	3.46×10 ⁻³	4.37×10 ⁻³	0.5		mg/m ³		
o 1984	排放速率	9.61×10 ⁻⁵	3.24×10 ⁻⁵	4.54×10 ⁻⁵	5.80×10 ⁻⁵	A Like had		kg/h		
A THE PLAN	实测浓度	7×10 ⁻⁵	1.4×10 ⁻⁴	5×10 ⁻⁵	9×10-5		3×10-5	mg/m ³		
汞	折算浓度	9×10 ⁻⁵	1.8×10 ⁻⁴	7×10 ⁻⁵	1.1×10 ⁻⁴	0.05	HE INC.	mg/m ³		
8	排放速率	1.23×10 ⁻⁶	2.44×10 ⁻⁶	8.58×10 ⁻⁷	1.51×10 ⁻⁶			kg/h		

NEW THE

报告编号: 22G01019C1 页码: 16/44

			122 1				
	检测	则结 <mark>果(202</mark> 2	2年7月18日	(E	GB		
-F. D		排气筒高	度: 80m		18484-2020 危	LA .I. m	34.17
项目	5000	吨/年废液炉	·焚烧项目(Q4)		检出限	单位 mg/m³ mg/m³ kg/h mg/m³ kg/h mg/m³ kg/h mg/m³ kg/h mg/m³ kg/h mg/m³ kg/h
	第一次	第二次	第三次	平均值	表 表 3	*************************************	A liki in
实测浓度	ND	ND	ND	ND		3	mg/m ³
折算浓度	ND	ND	ND	ND	100	William	mg/m ³
排放速率	1	/		/			kg/h
实测浓度	18	29	36	28	A The	3	mg/m ³
折算浓度	24	37	44	35	300	(2) in	mg/m ³
排放速率	0.22	0.37	0.40	0.33	juli juli		kg/h
实测浓度	ND	ND	ND	ND	E THE	3	mg/m ³
折算浓度	ND	ND 👂	ND	ND	100		mg/m ³
排放速率	/	iii /	/	1	2	Alen	kg/h
实测浓度	15.1	14.5	14.5	14.7		1.0	mg/m ³
折算浓度	20.4	18.6	17.9	19.0	30		mg/m ³
排放速率	0.181	0.183	0.161	0.175		An line it	kg/h
实测浓度	1.85	1.89	1.88	1.87		0.2	mg/m ³
折算浓度	2.26	2.42	2.35	2.34	60		mg/m ³
排放速率	2.19×10 ⁻²	2.11×10 ⁻²	2.19×10 ⁻²	2.16×10 ⁻²			kg/h
实测浓度	ND	ND	ND	ND	(#	0.08	mg/m ³
折算浓度	ND	ND	ND	ND	4.0		mg/m ³
排放速率	/	/	12/	/			kg/h
	折排实折排实折排实折排实折排实折排实折排实折排实折排实折排实折排实折排实折排实折	项目 5000 第一次 实测浓度 ND 排放速率 / 实测浓度 18 折算浓度 24 排放速率 0.22 实测浓度 ND 排放速率 / 实测浓度 15.1 折算浓度 20.4 排放速率 0.181 实测浓度 1.85 折算浓度 2.26 排放速率 2.19×10-2 实测浓度 ND 折算浓度 ND	项目排气筒高5000 吨/年废液炉第一次第二次第一次第二次实測浓度ND排放速率/实測浓度1829折算浓度2437排放速率0.220.37实测浓度NDND排放速率//实测浓度15.114.5折算浓度20.418.6排放速率0.1810.183实测浓度1.851.89折算浓度2.262.42排放速率2.19×10-22.11×10-2实测浓度NDND折算浓度NDND	项目 排气筒高度: 80m 5000 吨/年废液炉焚烧项目 (第一次 第二次 实测浓度 ND ND ND 排放速率 / / 实测浓度 18 29 36 折算浓度 24 37 44 排放速率 0.22 0.37 0.40 实测浓度 ND ND ND 排放速率 / / 实测浓度 15.1 14.5 14.5 折算浓度 20.4 18.6 17.9 排放速率 0.181 0.183 0.161 实测浓度 1.85 1.89 1.88 折算浓度 2.26 2.42 2.35 排放速率 2.19×10-2 2.11×10-2 2.19×10-2 实测浓度 ND ND ND 折算浓度 ND ND ND 折算浓度 ND ND ND	第一次 第二次 第三次 平均値 字測浓度 ND ND ND ND ND ND ND N	排气筒高度: 80m 5000 吨/年废液炉焚烧项目(Q4) 第一次 第三次 平均值 東沙縣度 ND ND	排气筒高度: 80m

		检测结果	. 检测结果((2022年7月	20日)	GB		
检测项目		排气筒高度: 80m 18484-2020 危 险废物焚烧污 检出						单位
位于	- - - - - - - - - - - -		DA00	1 废气		应废物炎烷乃 染控制标准	位置	平位
(A ATT I BE	第一次	第二次	第三次	平均值	表3	检出限 0.08 	
	实测浓度	ND	ND	ND	ND		0.08	mg/m ³
氟化氢	折算浓度	ND	ND	ND	ND	4.0		mg/m ³
	排放速率	/		/	/		Billing	kg/h

本页完

报告编号: 22G01019C1 页码: 17/44

				M. Lient				
		大道道	捡测结果(2022	年7月18日		GB		
LA SEN	- 		排气筒高	度: 80m	The Life	18484-2020	1A 11 170	34 tr
位测	项目	50	00 吨/年废液炉	焚烧项目(Q4	1)	一 危险废物焚 烧污染控制	位出限	单位
A Hillian		第一次	第二次	第三次	均值	标准	************************************	for the same of th
	实测浓度	5.71×10 ⁻³	8.29×10 ⁻³	5.55×10 ⁻³	6.52×10 ⁻³	A [ii]	3×10 ⁻⁴	mg/m³
锡	折算浓度	7.61×10 ⁻³	1.05×10 ⁻²	6.77×10 ⁻³	8.29×10 ⁻³	12		mg/m ³
	排放速率	5.65×10 ⁻⁵	9.85×10 ⁻⁵	6.26×10 ⁻⁵	7.25×10 ⁻⁵		A little in	kg/h
	实测浓度	6.31×10 ⁻³	5.86×10 ⁻³	2.37×10 ⁻³	4.85×10 ⁻³	A William	2×10 ⁻⁵	mg/m ³
锑	折算浓度	8.41×10 ⁻³	7.42×10 ⁻³	2.89×10 ⁻³	6.24×10 ⁻³		(2)	mg/m ³
	排放速率	7.25×10 ⁻⁵	6.97×10 ⁻⁵	2.67×10 ⁻⁵	5.63×10 ⁻⁵	[##	<u></u>	kg/h
	实测浓度	3.88×10 ⁻³	4.76×10 ⁻³	2.34×10 ⁻³	3.66×10 ⁻³		2×10 ⁻⁴	mg/m ³
铜	折算浓度	5.17×10 ⁻³	6.03×10 ⁻³	2.85×10 ⁻³	4.68×10 ⁻³			mg/m ³
	排放速率	4.46×10 ⁻⁵	5.66×10 ⁻⁵	2.64×10 ⁻⁵	4.25×10 ⁻⁵	الله الله		kg/h
. A.	实测浓度	4.20×10 ⁻³	3.58×10 ⁻³	1.71×10 ⁻³	3.16×10 ⁻³	Pring.	7×10 ⁻⁵	mg/m ³
锰	折算浓度	5.60×10 ⁻³	4.53×10 ⁻³	2.09×10 ⁻³	4.07×10 ⁻³			mg/m ³
	排放速率	4.83×10 ⁻⁵	4.26×10 ⁻⁵	1.93×10 ⁻⁵	3.67×10 ⁻⁵	A STEEL		kg/h
A link like	实测浓度	4.52×10 ⁻³	5.22×10 ⁻³	2.57×10 ⁻³	4.10×10 ⁻³		1×10 ⁻⁴	mg/m ³
镍	折算浓度	6.03×10 ⁻³	6.61×10 ⁻³	3.13×10 ⁻³	5.26×10 ⁻³	8	THE REAL	mg/m ³
	排放速率	5.19×10 ⁻⁵	6.20×10 ⁻⁵	2.90×10 ⁻⁵	4.76×10 ⁻⁵	A Little		kg/h
THE THE	实测浓度	1.61×10 ⁻³	1.65×10 ⁻³	1.77×10 ⁻³	1.68×10 ⁻³		8×10 ⁻⁶	mg/m ³
钴	折算浓度	2.15×10 ⁻³	2.09×10 ⁻³	2.16×10 ⁻³	2.13×10 ⁻³			mg/m ³
	排放速率	1.85×10 ⁻⁵	1.96×10 ⁻⁵	2.00×10 ⁻⁵	1.94×10 ⁻⁵			kg/h
锡+锑+铜+	折算浓度	3.50×10 ⁻²	3.72×10 ⁻²	1.99×10 ⁻²	3.07×10 ⁻²	2.0		mg/m ³
锰+镍+钴	排放速率	2.92×10 ⁻⁴	3.49×10 ⁻⁴	1.84×10 ⁻⁴	2.75×10 ⁻⁴			mg/m ³
. The second	实测浓度	ND	ND	ND	ND		8×10 ⁻⁶	kg/h
铊	折算浓度	ND	ND	ND	ND	0.05		mg/m ³
	排放速率	/ 8	A Levi	A STATE OF THE STA	/			mg/m ³

报告编号: 22G01019C1 页码: 18/44

	(2)		金测结果(2022	年7月18日		GB		
检测:	而日常道		排气筒高	ANT IN	18484-2020 危险废物焚	松山阳	離位 mg/m³ mg/m³ kg/h mg/m³ kg/h mg/m³ kg/h mg/m³	
\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	火口	50	00 吨/年废液炉	焚烧项目(Q4	1)	烧污染控制	似山烬	平位
Affilia		第一次	第二次	第三次	均值	标准	松出限 8×10 ⁻⁶ 2×10 ⁻⁴ 2×10 ⁻⁴ 3×10 ⁻⁵	
	实测浓度	ND	ND	ND	ND	B	8×10 ⁻⁶	mg/m³
镉	折算浓度	ND	ND	ND	ND	0.05		mg/m ³
	排放速率			/			A life lieu	kg/h
	实测浓度	2.64×10 ⁻³	3.33×10 ⁻³	1.90×10 ⁻³	2.62×10 ⁻³		2×10 ⁻⁴	mg/m ³
铅	折算浓度	3.52×10 ⁻³	4.22×10 ⁻³	2.32×10 ⁻³	3.35×10 ⁻³	0.5		mg/m ³
	排放速率	3.03×10 ⁻⁵	3.96×10 ⁻⁵	2.14×10 ⁻⁵	3.04×10 ⁻⁵		ù <u></u>	kg/h
	实测浓度	1.35×10 ⁻³	1.62×10 ⁻³	1.05×10 ⁻³	1.34×10 ⁻³		2×10 ⁻⁴	mg/m ³
砷	折算浓度	1.80×10 ⁻³	2.05×10 ⁻³	1.28×10 ⁻³	1.71×10 ⁻³	0.5		mg/m ³
	排放速率	1.55×10 ⁻⁵	1.93×10 ⁻⁵	1.18×10 ⁻⁵	1.55×10 ⁻⁵			kg/h
-15	实测浓度	1.26×10 ⁻²	1.46×10 ⁻²	6.19×10 ⁻³	1.11×10 ⁻²	The same	3×10 ⁻⁴	mg/m ³
铬	折算浓度	1.68×10 ⁻²	1.85×10 ⁻²	7.55×10 ⁻³	1.43×10 ⁻²	0.5		mg/m ³
	排放速率	1.45×10 ⁻⁴	1.74×10 ⁻⁴	6.98×10 ⁻⁵	1.30×10 ⁻⁴	A Like Inde		kg/h
A LIE IPLI	实测浓度	7.5×10 ⁻⁴	7.5×10 ⁻⁴	4.5×10 ⁻⁴	6.5×10 ⁻⁴		3×10 ⁻⁵	mg/m ³
汞	折算浓度	9.2×10 ⁻⁴	9.6×10 ⁻⁴	5.6×10 ⁻⁴	8.1×10 ⁻⁴	0.05	Interior Property	mg/m ³
	排放速率	8.87×10 ⁻⁶	8.36×10 ⁻⁶	5.24×10 ⁻⁶	7.49×10 ⁻⁶			kg/h

NEW THE

报告编号: 22G01019C1 页码: 19/44

E in		检测组	吉果检测结果(2022年7月20	0日)	GB		
LA NEW -	स मर्था 🏥	V.	排气筒高	度: 80m	W. Lieb	18484-2020	1A 11 1712	34 13.
检测功	贝目		DA00	1 废气		危险废物焚 烧污染控制	位出限	10-4 mg/m ³ mg/m ³ kg/h 10-5 mg/m ³ kg/h 10-4 mg/m ³ mg/m ³ kg/h 10-5 mg/m ³ kg/h 10-6 mg/m ³ mg/m
Alling		第一次	第二次	第三次	均值	标准	松出限 3×10 ⁻⁴ 2×10 ⁻⁵ 2×10 ⁻⁵ 7×10 ⁻⁵ 1×10 ⁻⁴ 8×10 ⁻⁶ 8×10 ⁻⁶	Par.
	实测浓度	2.65×10 ⁻³	2.59×10 ⁻³	2.34×10 ⁻³	2.53×10 ⁻³	(3)	3×10 ⁻⁴	mg/m ³
锡	折算浓度	4.42×10 ⁻³	4.25×10 ⁻³	4.11×10 ⁻³	4.26×10 ⁻³			mg/m ³
	排放速率	1.67×10 ⁻⁴	1.72×10 ⁻⁴	1.61×10 ⁻⁴	1.67×10 ⁻⁴		A like in	kg/h
	实测浓度	ND	ND	ND ND	ND		2×10 ⁻⁵	mg/m ³
锑	折算浓度	ND	ND	MD ND	ND		(2)	mg/m ³
	排放速率	/		/		1111	<u></u>	kg/h
	实测浓度	1.40×10 ⁻²	1.37×10 ⁻²	1.14×10 ⁻²	1.30×10 ⁻²		2×10 ⁻⁴	mg/m ³
铜	折算浓度	2.33×10 ⁻²	2.25×10 ⁻²	2.00×10 ⁻²	2.19×10 ⁻²			mg/m ³
	排放速率	8.81×10 ⁻⁴	9.09×10 ⁻⁴	7.83×10 ⁻⁴	8.58×10 ⁻⁴			kg/h
anti-	实测浓度	7.12×10 ⁻⁴	4.62×10 ⁻⁴	1.37×10 ⁻³	8.48×10 ⁻⁴	A like is a	7×10 ⁻⁵	mg/m ³
锰	折算浓度	1.19×10 ⁻³	7.57×10 ⁻⁴	2.40×10 ⁻³	1.45×10 ⁻³			mg/m ³
- 11%	排放速率	4.48×10 ⁻⁵	3.07×10 ⁻⁵	9.40×10 ⁻⁵	5.65×10 ⁻⁵	A life in a		kg/h
A little let	实测浓度	2.15×10 ⁻³	2.60×10 ⁻³	2.65×10 ⁻³	2.47×10 ⁻³		1×10 ⁻⁴	mg/m ³
镍	折算浓度	3.58×10 ⁻³	4.26×10 ⁻³	4.65×10 ⁻³	4.16×10 ⁻³	3	Hall have	mg/m ³
8	排放速率	1.35×10 ⁻⁴	1.73×10 ⁻⁴	1.82×10 ⁻⁴	1.63×10 ⁻⁴			kg/h
	实测浓度	ND	ND	ND	ND		8×10-6	mg/m ³
钴	折算浓度	ND	ND	ND	ND	A THE PLAN		mg/m ³
A WALLERY	排放速率	/	/	A Willes				kg/h
锡+锑+铜+	折算浓度	3.25×10 ⁻²	3.17×10 ⁻²	3.12×10 ⁻²	3.18×10 ⁻²	2.0		mg/m ³
锰+镍+钴	排放速率	1.23×10 ⁻³	1.28×10 ⁻³	1.22×10 ⁻³	1.24×10 ⁻³			mg/m ³
	实测浓度	ND	ND	ND	ND		8×10 ⁻⁶	kg/h
铊	折算浓度	ND	ND	ND	ND	0.05		mg/m ³
. 10.	排放速率	/ A!!			/	Z-History	(mg/m ³

报告编号: 22G01019C1 页码: 20 /44

181	TELL .	all.		The later	19	SR 7543	1	1
		检测组	吉果检测结果((2022年7月2	0日)	GB		
1A 2011 T	æ næri	4,00	排气筒高	18484-2020	JA 11, 170	34 12		
检测工	火日		DA00	1 废气		危险废物焚 烧污染控制	位出限	单位
Alffill		第一次	第二次	第三次	均值	标准	松出限 8×10 ⁻⁶ 2×10 ⁻⁴ 3×10 ⁻⁴ 3×10 ⁻⁵	
	实测浓度	4.31×10 ⁻⁵	1.52×10 ⁻⁵	9.40×10 ⁻³	3.15×10 ⁻³	A little	8×10-6	mg/m ³
镉	折算浓度	7.18×10 ⁻⁵	2.49×10 ⁻⁵	1.65×10 ⁻²	5.53×10 ⁻³	0.05		mg/m ³
	排放速率	2.71×10 ⁻⁶	1.01×10 ⁻⁵	6.45×10 ⁻⁶	6.42×10 ⁻⁶		A find har	kg/h
	实测浓度	2.07×10 ⁻²	2.18×10 ⁻²	1.61×10 ⁻²	1.95×10 ⁻²	A III III	2×10 ⁻⁴	mg/m ³
铅	折算浓度	3.45×10 ⁻²	3.57×10 ⁻²	2.82×10 ⁻²	3.28×10 ⁻²	0.5		mg/m ³
	排放速率	1.30×10 ⁻³	1.45×10 ⁻³	1.11×10 ⁻³	1.29×10 ⁻³	[<u></u>	kg/h
	实测浓度	1.07×10 ⁻³	1.18×10 ⁻³	1.14×10 ⁻³	1.13×10 ⁻³		2×10 ⁻⁴	mg/m ³
砷	折算浓度	1.78×10 ⁻³	1.93×10 ⁻³	2.00×10 ⁻³	1.91×10 ⁻³	0.5		mg/m ³
	排放速率	6.73×10 ⁻⁵	7.83×10 ⁻⁵	7.83×10 ⁻⁵	7.46×10 ⁻⁵	18 · 18		kg/h
-16	实测浓度	3.29×10 ⁻³	3.90×10 ⁻³	4.90×10 ⁻³	4.03×10 ⁻³	A life	3×10 ⁻⁴	mg/m³
铬	折算浓度	5.48×10 ⁻³	6.39×10 ⁻³	8.60×10 ⁻³	6.82×10 ⁻³	0.5		mg/m ³
	排放速率	2.07×10 ⁻⁴	2.59×10 ⁻⁴	3.36×10 ⁻⁴	2.67×10 ⁻⁴	A fill how		kg/h
Allitation	实测浓度	1.54×10 ⁻³	1.60×10 ⁻³	1.51×10 ⁻³	1.55×10 ⁻³		3×10 ⁻⁵	mg/m ³
汞	折算浓度	2.48×10 ⁻³	2.71×10 ⁻³	2.60×10 ⁻³	2.60×10 ⁻³	0.05		mg/m ³
	排放速率	1.06×10 ⁻⁴	1.44×10 ⁻⁴	1.50×10 ⁻⁴	1.33×10 ⁻⁴			kg/h
		11. En.	l	200		Lance Control of the	18.7	47

本负完

NEW THE

报告编号: 22G01019C1 页码: 21/44

A line		检	测结果(2022	年7月19日)	A literary		>
4A.3811 a	检测项目		排气筒高	度: 15m	GB14554-1993 - 恶臭污染物排 放标准 表 2	检出限	单位	
位侧坝日		î î	丙类库贮存废 [。]	气(DA002 Q6)				
		第一次	第二次	第三次	第四次		P	AN IEL
	实测浓度	ND	ND	ND	ND	- -	0.25	mg/m ³
氨	排放速率	/		1	/	4.9		kg/h
坛儿与	实测浓度	ND	ND	ND	ND	##j#	0.01	mg/m ³
硫化氢	排放速率	B line is	/ /	/	/	0.33		kg/h
臭气	浓度	97	97	72	72	2000		无量纲
	Land State of the			1		A linker	d	ur itt

			检测结果(2022年7月19日)					THE IP
检测项目		排气筒高度: 15m 丙类库贮存废气(DA002 Q6)			DB32/4041-20 21 大气污染物	检出限	单位	
					综合排放标准			
A initialization			第二次	第三次	第四次	表1		
非甲烷总	实测浓度	1.27	1.28	1.25	1.20	60	0.07	mg/m ³
烃	排放速率	3.74×10 ⁻²	3.80×10 ⁻²	4.09×10 ⁻²	3.57×10 ⁻²	3		kg/h
		The little of		• 2%	1	A life in		Lill.

	- 15	检测结	果(2022年7月	DB32/4041-20			
检测项目			排气筒高度: 15m 库贮存废气(DA00	21 大气污染物 综合排放标准	检出限	单位	
A line in		第一次	第二次	第三次	表1		
田至水亭 孙加	实测浓度	1.1	1.2	1.2	20	1.0	mg/m ³
颗粒物	排放速率	3.27×10 ⁻²	3.78×10 ⁻²	3.79×10 ⁻²			kg/h

dt		D line is a					
A ME IPLI		检测结	果(2022年7月	19日)	DB32/4041-20		
+人 2回1-	OE I		排气筒高度: 15	21 大气污染物	检出限	单位	
检测	火日	丙类库贮存废气(DA002 Q6)			综合排放标准	位品限	平位
		第一次	第二次	第三次	表1		
复业层	实测浓度	1.46	1.53	1.53	10	0.2	mg/m³
氯化氢	排放速率	4.33×10 ⁻²	4.54×10 ⁻²	5.00×10 ⁻²	0.18		kg/h
与 / J. Hm	实测浓度	0.13	0.12	0.12	3	6×10 ⁻²	mg/m ³
氟化物	排放速率	3.85×10 ⁻³	3.56×10 ⁻³	3.92×10 ⁻³	0.072		kg/h

报告编号: 22G01019C1 页码: 22/44

A like	pv .	检		年7月19日)	A The lead		i
I A Nest-	检测 面目		排气筒高	<u></u>	GB14554-1993	检出限	36.73	
检测项目		4#危	险废物暂存仓	库(DA004 (形臭污染物排 放标准 表 2		单位	
		第一次 第二次		第三次 第四次		700 July 100 -	2	THE POLICE
氨	实测浓度	1.87	1.62	1.87	1.51		0.25	mg/m ³
安(排放速率	4.15×10 ⁻²	3.46×10 ⁻²	4.05×10 ⁻²	3.49×10 ⁻²	4.9		kg/h
水小层	实测浓度	ND	ND	ND	ND		0.01	mg/m ³
硫化氢	排放速率	Dine!	1	/	/	0.33		kg/h
臭气	浓度	72	97	97	97	2000		无量纲
		W. III	١			A little in		ut it.

		检	测结果(202	2年7月19日)		A The lies	
检测项目		4#危	All her	i度: 15m c库(DA004 (DB32/4041-20 21 大气污染物 综合排放标准	检出限	单位	
A liter		第一次	第二次	第三次	第四次	表1		
非甲烷总	实测浓度	1.30	1.28	1.26	1.30	60	0.07	mg/m³
烃	排放速率	2.92×10 ⁻²	2.88×10 ⁻²	2.83×10 ⁻²	2.92×10 ⁻²	3	6.1%	kg/h

	The later	检测结	果(2022年7月	DB32/4041-20	h)		
检测项目		, :TE	排气筒高度: 15r	21 大气污染物 综合排放标准	检出限	单位	
		第一次	第二次	第三次	表1	A linear	
田豆小子中加	实测浓度	1.2	1.3	1.1	20	1.0	mg/m ³
颗粒物	排放速率	2.60×10 ⁻²	2.92×10 ⁻²	2.41×10 ⁻²	1	3	kg/h

检测	项目	3	果(2022 年 7 月 19 排气筒高度: 15m 物暂存仓库(DA00	DB32/4041-20 21 大气污染物 综合排放标准	检出限	单位	
		第一次	第二次	第三次	表1		A
复业与	实测浓度	1.86	1.88	1.89	10	0.2	mg/m ³
氯化氢	排放速率	4.08×10 ⁻²	4.12×10 ⁻²	4.15×10 ⁻²	0.18		kg/h
复 / L shm	实测浓度	0.11	0.10	0.12	3	6×10 ⁻²	mg/m ³
氟化物	排放速率	2.35×10 ⁻³	2.21×10 ⁻³	2.74×10 ⁻³	0.072		kg/h

报告编号: 22G01019C1 页码: 23 /44

A line		检	测结果(2022	年7月19日)	A HE PER		
4A.2001	检测项目		排气筒高	度: 15m	GB14554-1993 - 恶臭污染物排 放标准 表 2	检出限	单位	
位测坝目		7#危	险废物暂存仓	库(DA003(
		第一次 第二次 第三次 第四次			第四次		E	THE TELL
	实测浓度	0.38	0.45	0.29	0.45	- -	0.25	mg/m ³
氨	排放速率	5.16×10 ⁻³	5.93×10 ⁻³	4.09×10 ⁻³	6.19×10 ⁻³	4.9		kg/h
硫化氢	实测浓度	ND	ND	ND	ND	[[]]	0.01	mg/m ³
师化 圣	排放速率	Dine!	/ ##	/	/	0.33	A William	kg/h
臭气	浓度	97	72	97	97	2000		无量纲
	Like States	W. I'll ill	ذ	-6		A linker		ut it

			测结果(2022	2年7月19日	DB32/4041-20 21 大气污染物 综合排放标准		HEIP	
检测项目			排气筒高	i度: 15m		检出限	* *	
		7#危	险废物暂存仓	上库(DA003(单位	
\$2 ···			第二次	第三次	第四次	表 1	A life in	
非甲烷总	实测浓度	1.34	1.22	1.26	1.26	60	0.07	mg/m ³
烃	排放速率	2.08×10 ⁻²	1.89×10 ⁻²	1.94×10 ⁻²	1.94×10 ⁻²	3		kg/h
Jan Ber				Libert				

	A THE TOP IS	检测结	果(2022年7月	DB32/4041-20	li.		
检测项目		.4%	排气筒高度: 15n	21 大气污染物综合排放标准	检出限	单位	
		第一次	第二次	第三次	表1	A linear	
田石小学中加	实测浓度	1.3	1.2	1.2	20	1.0	mg/m ³
颗粒物	排放速率	1.77×10 ⁻²	1.62×10 ⁻²	1.64×10 ⁻²	1		kg/h

检测	项目		果(2022 年 7 月 19 排气筒高度: 15m 物暂存仓库(DA0	DB32/4041-20 21 大气污染物 综合排放标准	检出限	単位	
		第一次	第二次	第三次	表1		A
复业与	实测浓度	7.99	7.86	7.98	10	0.2	mg/m ³
氯化氢	排放速率	0.214	0.205	0.196	0.18	- 3 112	kg/h
怎 / L Han	实测浓度	0.11	0.10	0.11	3	6×10 ⁻²	mg/m ³
氟化物	排放速率	1.45×10 ⁻³	1.27×10 ⁻³	1.33×10 ⁻³	0.072		kg/h

报告编号: 22G01019C1 页码: 24/44

)V	检	测结果(2022	2年7月19日	j)	A little		
LA NEW	er milita		排气筒高	度: 15m	A liki ish	GB14554-1993	A Marie	34 N.
检测기	贝目		DA005 污	水站排气筒	12	恶臭污染物排放标准 表 2	检出限	単位
A life in		第一次	第二次	第三次	第四次		. 15 <u>.</u>	A Laboratory
氨	实测浓度	1.86	2.32	2.04	1.92	B	0.25	mg/m ³
安(排放速率	7.45×10 ⁻³	9.20×10 ⁻³	8.05×10 ⁻³	7.49×10 ⁻³	4.9		kg/h
法从与	实测浓度	ND	ND	ND	ND		0.01	mg/m ³
硫化氢	排放速率	/	/	/		0.33		kg/h
臭气	浓度	97	97	97	97	2000	(5)	无量纲

		检测组	吉果(2022年7月)	19日)	DB32/4041-20	log-	
检测	项目	DA	排气筒高度: 15m 4001-0 热解炉出渣		21 大气污染物 综合排放标准	检出限	单位
		第一次	第二次	第三次	表1	13-0	
田皇本学 外加	实测浓度	1.3	1.1	1.3	20	1.0	mg/m ³
颗粒物	排放速率	1.53×10 ⁻²	1.32×10 ⁻²	1.49×10 ⁻²	1	(2)	kg/h

- 注: 1.执行标准为客户提供。
 - 2. "ND"表示未检出。
 - 3. "/"表示检测项目的实测浓度小于检出限,故排放速率无需计算。
- 4. "--"表示在《GB 18484-2020 危险废物焚烧污染控制标准》、《GB14554-1993 恶臭污染物排放标准》中未对该项目作限制。

检测点位	采样时间	检测项目	检测结果	均值	GB 18484-2020 危险废物焚烧 污染控制标准	単位
	2022年7月20日 11:04~13:04	二噁英类	0.14	ا آه ايان		ng TEQ/m ³
DA001 废 气	2022年7月20日 13:26~15:26	二噁英类	0.094	0.12	0.5	ng TEQ/m³
A William	2022年7月20日 15:50~17:50	二噁英类	0.13		Siliji	ng TEQ/m³

注: 执行标准由客户提供

本负完

报告编号: 22G01019C1 页码: 25/44

表 1 废气(有组织)检测结果 (含氧量 15.5%)

检	检测点位	DA001 5	麦气	采样时间	2022年	7月20日 11:04~13:04			
B	4人3回	ITE D A WILLIAM	实测浓度	检出限	换算浓度	毒性当量	遣(TEQ)		
	位 识	项目	ng/m³	ng/m ³	ng/m³	TEF	ng/m³		
	2,3,	7,8- T ₄ CDF	0.053	0.00002	0.096	0.1	0.0096		
-6.	1,2,3	3,7,8- P ₅ CDF	0.077	0.0003	0.14	0.05	0.0070		
多	2,3,4	1,7,8- P₅CDF	0.086	0.0002	0.16	0.5	0.080		
氯	1,2,3,	4,7,8- H ₆ CDF	0.062	0.0002	0.11	0.1	0.011		
代二二	1,2,3,	6,7,8- H ₆ CDF	0.054	0.0002	0.098	0.1	0.0098		
苯	2,3,4,	6,7,8- H ₆ CDF	0.049	0.00004	0.089	0.1	0.0089		
并呋	1,2,3,	7,8,9- H ₆ CDF	0.0078	0.0002	0.014	0.1	0.0014		
喃	1,2,3,4	-,6,7,8- H ₇ CDF	0.17	0.0005	0.31	0.01	0.0031		
	1,2,3,4	-,7,8,9- H ₇ CDF	0.019	0.00009	0.035	0.01	0.00035		
		O ₈ CDF	0.090	0.0002	0.16	0.001	0.00016		
多	2,3,	7,8- T ₄ CDD	N.D.	0.00002	0.00004	1	0.00002		
氯 代	1,2,3	,7,8- P ₅ CDD	N.D.	0.0002	0.0004	0.5	0.0001		
二	1,2,3,	4,7,8- H ₆ CDD	0.011	0.0003	0.020	0.1	0.0020		
苯并	1,2,3,	6,7,8- H ₆ CDD	0.020	0.0002	0.036	0.1	0.0036		
对	1,2,3,	7,8,9- H ₆ CDD	0.012	0.0009	0.022	0.1	0.0022		
三噁	1,2,3,4	,6,7,8- H ₇ CDD	0.16	0.0001	0.29	0.01	0.0029		
英		O ₈ CDD	0.19	0.0001	0.35	0.001	0.00035		
A Life Inc.		类总量∑ +PCDFs)			-aft	A the low	0.14		

- 注: 1. 实测浓度: 二噁英类质量浓度测定值(ng/m³)。
 - 2. 换算浓度: 二噁英类质量浓度的 11%含氧量换算值 (ng/m^3) ; $\rho = (21-11) / (21-\phi_s(O_2)) \times \rho_s$ 式中, $\phi_s(O_2)$: 废气中含氧量,%。
 - 3. 毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。
 - 4. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(ng/m³)。
 - 5. 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

报告编号: 22G01019C1 页码: 26/44

表 1 废气(有组织)检测结果 (含氧量 15.7%)

		Alm ALIZA	and the second s		A:		4 2 V 4 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
检验	测点位	DA001 /2	接气	采样时间	2022年	7月20日 1	3:26~15:26
	±△、河口	urs D	实测浓度	检出限	换算浓度	毒性当量	量(TEQ)
	位视	项目	ng/m ³	ng/m ³	ng/m ³	TEF	ng/m³
	2,3,	7,8- T ₄ CDF	0.032	0.00002	0.060	0.1	0.0060
et.	1,2,3	3,7,8- P ₅ CDF	0.052	0.0003	0.098	0.05	0.0049
多	2,3,4	4,7,8- P₅CDF	0.057	0.0002	0.11	0.5	0.055
氯 代	1,2,3,	4,7,8- H ₆ CDF	0.043	0.0002	0.081	0.1	0.0081
17	1,2,3,	6,7,8- H ₆ CDF	0.036	0.0002	0.068	0.1	0.0068
苯并	2,3,4,	6,7,8- H ₆ CDF	0.029	0.00004	0.055	0.1	0.0055
一 一 呋	1,2,3,	7,8,9- H ₆ CDF	0.0037	0.0002	0.0070	0.1	0.00070
喃	1,2,3,4	4,6,7,8- H ₇ CDF	0.083	0.0005	0.16	0.01	0.0016
	1,2,3,4	4,7,8,9- H ₇ CDF	0.0096	0.00009	0.018	0.01	0.00018
3		O ₈ CDF	0.046	0.0002	0.087	0.001	0.000087
多。	2,3,	7,8- T ₄ CDD	N.D.	0.00002	0.00004	1	0.00002
氯 代	1,2,3	5,7,8- P ₅ CDD	N.D.	0.0002	0.0004	0.5	0.0001
二苯	1,2,3,	4,7,8- H ₆ CDD	0.0061	0.0003	0.012	0.1	0.0012
并	1,2,3,	6,7,8- H ₆ CDD	0.0089	0.0002	0.017	0.1	0.0017
对	1,2,3,	7,8,9- H ₆ CDD	0.0059	0.0009	0.011	0.1	0.0011
三 噁	1,2,3,4	,6,7,8- H ₇ CDD	0.051	0.0001	0.096	0.01	0.00096
英		O ₈ CDD	0.080	0.0001	0.15	0.001	0.00015
Life 18		类总量∑ :+PCDFs)			-	A life bil	0.094

本负完

报告编号: 22G01019C1 页码: 27/44

表 1 废气(有组织)检测结果 (含氧量 15.8%)

检	检测点位 DA	DA001 5	麦气	采样时间	2022年	7月20日1	5:50~17:50
B	4人3回	ITE D A WILLIAM	实测浓度	检出限	换算浓度	毒性当量	遣(TEQ)
	位 识	项目	ng/m³	ng/m³	ng/m³	TEF	ng/m³
	2,3,	7,8- T ₄ CDF	0.038	0.00002	0.073	0.1	0.0073
-6.	1,2,3	3,7,8- P ₅ CDF	0.065	0.0003	0.13	0.05	0.0065
多	2,3,4	1,7,8- P₅CDF	0.076	0.0002	0.15	0.5	0.075
氯	1,2,3,	4,7,8- H ₆ CDF	0.068	0.0002	0.13	0.1	0.013
代二二	1,2,3,	6,7,8- H ₆ CDF	0.053	0.0002	0.10	0.1	0.010
苯	2,3,4,	6,7,8- H ₆ CDF	0.045	0.00004	0.087	0.1	0.0087
并呋	1,2,3,	7,8,9- H ₆ CDF	0.0073	0.0002	0.014	0.1	0.0014
喃	1,2,3,4	-,6,7,8- H ₇ CDF	0.17	0.0005	0.33	0.01	0.0033
E.	1,2,3,4	-,7,8,9- H ₇ CDF	0.020	0.00009	0.038	0.01	0.00038
		O ₈ CDF	0.22	0.0002	0.42	0.001	0.00042
多	2,3,	7,8- T ₄ CDD	N.D.	0.00002	0.00004	1	0.00002
氯代	1,2,3	,7,8- P ₅ CDD	N.D.	0.0002	0.0004	0.5	0.0001
二	1,2,3,	4,7,8- H ₆ CDD	0.011	0.0003	0.021	0.1	0.0021
苯并	1,2,3,	6,7,8- H ₆ CDD	0.015	0.0002	0.029	0.1	0.0029
对	1,2,3,	7,8,9- H ₆ CDD	0.0098	0.0009	0.019	0.1	0.0019
三噁	1,2,3,4	,6,7,8- H ₇ CDD	0.076	0.0001	0.15	0.01	0.0015
英		O ₈ CDD	0.24	0.0001	0.46	0.001	0.00046
A HE IN		类总量∑ +PCDFs)			-aft	A life legi	0.13

本负完

NEW THE

报告编号: 22G01019C1 页码: 28/44

1.4 噪声

检测点位	检测时间 (2022年7月15日)	检测结果	GB 12348-2008 工业企业厂界 环境噪声排放	单位	主要声源
		Leq	标准 表1 2类		A Lieux
NI JUE H W 1	昼间:16:06~16:07	52.5	60	dB (A)	无
N1 北厂界外 1m	夜间:22:04~22:05	42.6	50	dB (A)	无 🏖
かった口里が 1	昼间:16:12~16:13	52.6	60	dB (A)	无
N2 东厂界外 1m	夜间:22:13~22:14	44.9	50	dB (A)	无
NO #C # 4 1	昼间:16:21~16:22	52.9	60	dB (A)	无
N3 南厂界外 1m	夜间:22:21~22:22	43.6	50	dB (A)	无
NA TERM 1	昼间:16:28~16:29	51.8	60	dB (A)	无
N4 西厂界外 1m	夜间:22:31~22:32	43.3	50	dB (A)	无

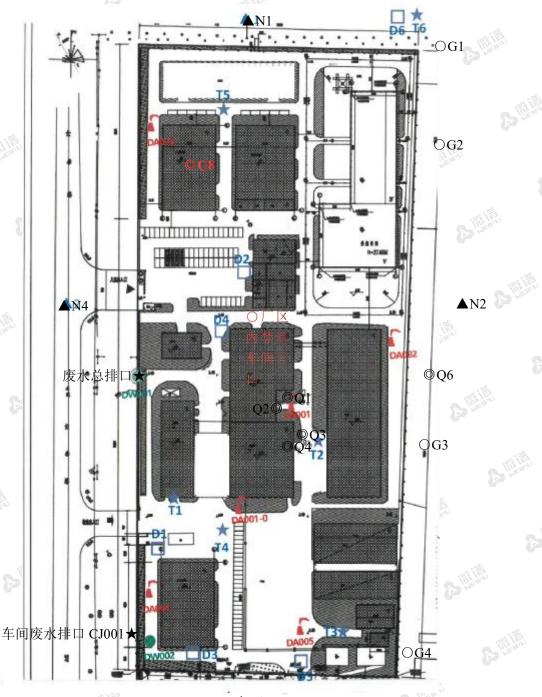
注: 执行标准为客户提供。

报告编号: 22G01019C1 页码: 29/44

2. 代表性附件:

2.1 样品信息

2.1 件加行总			
样品类别	点位名称	采样员	样品状态
废水	废水总排口	陆超、严垚	无色、无味、无浮油
灰 小	车间废水排口 CJ001	陆超、程林	无色、无味、无浮油
A Million	厂界下风向 G1	陆超、程林、董泽新、金 勇	完好
	厂界下风向 G2	陆超、程林、董泽新、金 勇	完好
废气 (无组织)	厂界下风向 G3	陆超、程林、董泽新、金 勇	完好
	厂界下风向 G4	陆超、程林、董泽新、金 勇	完好
	厂区内焚烧车间门口	陆超、程林、董泽新、金 勇	(2)
\$ time.	9000 吨/年回转窑焚烧项目 (Q1)	张延鹏、陆超	完好
A William	12000 吨/年回转窑焚烧项目 (Q2)	李黎明、严垚	完好
ar it	12000 吨/年回转窑焚烧项目 (Q3)	孙毅、程林、张昊	完好
A like in	5000 吨/年废液炉焚烧项目 (Q4)	孙毅、程林、张昊	完好
废气 (有组织)	DA001 废气	陆超、严垚	完好
	丙类库贮存废气(DA002 Q6)	陆超、孙毅	完好
A little	4#危险废物暂存仓库(DA004 Q7)	张昊、严垚	完好
	7#危险废物暂存仓库(DA003 Q8)	陆超、陆超、孙毅	完好
	DA005 污水站排气筒	张昊、严垚	完好
	DA001-0 热解炉出渣排口	张昊、严垚	完好
	N1 北厂界外 1m	陆超	1
噪声	N2 东厂界外 1m	陆超	/ Allille
紫严	N3 南厂界外 1m	陆超	
i i i	N4 西厂界外 1m	陆超	/ B ill
Electric Control of the Control of t	***	- - 大石	·



报告编号: 22G01019C1 页码: 30/44

2.2 布点图

▲N3

说明:★废水采样点 ○废气(无组织)采样点 ◎废气(有组织)采样点 ▲噪声采样点

报告编号: 22G01019C1 页码: 31/44

2.3 参数

(1) 废气(无组织)现场气象参数

检测点位	检测项目	检测频次	温度℃	大气压 kPa	相对湿度%	风速 m/s	风向	天气 状况	
	· 氨、硫化氢、	第一次	34.0	100.2	50.3	2.0	西	多云	
厂界下风向 G1 厂界下风向 G2	製、硫化氢、 氯化氢、颗 粒物、氟化	第二次	35.0	100.1	50.1	2.1	西	多云	1877
厂界下风向 G3 厂界下风向 G4	物、臭气浓度	第三次	35.5	100.1	49.8	2.1	西	多云	
	又	第四次	35.0	100.1	50.3	2.0	西	多云	8
		第一次	34.0	100.2	50.3	2.0	西	多云	
厂界下风向 G1 厂界下风向 G2	非甲烷总烃	第二次	34.0	100.2	50.3	2.0	西	多云	J.
厂界下风向 G3 厂界下风向 G4	AFT WUNKE	第三次	34.3	100.2	50.3	2.0	西	多云	
		第四次	34.7	100.2	50.3	2.0	西	多云	
ant it		第一次	35.0	49.5	49.5	2.0	西	多云	
厂区内焚烧车	非甲烷总烃	第二次	35.0	49.5	49.5	2.0	西	多云	
间门口	11. 中 7 从心 在	第三次	35.0	49.5	49.5	2.0	西	多云	
11/1	A William	第四次	35.0	49.5	49.5	2.0	西	多云	11/1
				A**					

报告编号: 22G01019C1 页码: 32/44

(2) 废气(有组织)参数

<u></u> 金查项目: 90	00 吨/年回车	A STATE OF THE STA)颗粒物	7、二氧化	硫、氮氧	 化物、-	·氧化碳	<u> </u>	THE ISL	
加仁分业	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧量
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.7854	10.0	86.2	71	-0.06	-0.01	28250	19081	9.8	14.8
第二次	99.9	0.7854	10.1	85.9	72	-0.07	-0.03	28460	19285	9.6	15.2
第三次	99.9	0.7854	10.0	86.4	71	-0.08	-0.03	28323	19107	9.9	15.7
查项目: 90	00 吨/年回车	专窑焚烧项	页目(Q1)汞、氯	【化氢、氟	化氢			1	. 31.	
加与分类	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧量
烟气参数	kPa	m^2	m/s	$^{\circ}\mathrm{C}$	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.7854	10.2	86.2	74	-0.08	-0.03	28931	19563	9.7	15.0
第二次	99.9	0.7854	10.1	86.9	72	-0.08	-0.03	28497	19209	9.8	14.6
第三次	99.9	0.7854	10.2	87.2	74	-0.08	-0.03	18958	19568	9.5	15.4
金查项目: 90		专窑焚烧项	页目(Q1) 除汞じ	从外金属	i#	1				A INI
Im E A W	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧
烟气参数	kPa	m^2	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.7854	10.3	86.4	75	-0.08	-0.03	29053	19633	9.7	15.2
第二次	99.9	0.7854	10.3	86.3	75	-0.08	-0.03	28994	19622	9.6	15.3
第三次	99.9	0.7854	10.3	86.8	75	-0.09	-0.03	29147	19660	9.8	15.6
适 查项目: 120	000 吨/年回	转窑焚烧	项目(Q	2) 颗粒:	物、二氧化	七硫、氮氧	氧化物、	一氧化碳、	氯化氢、	氟化氢	
四日公里	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧
烟气参数	kPa	m^2	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.7854	10.3	92.5	74	-0.06	-0.01	29055	18626	12.9	15.3
第二次	99.9	0.7854	10.2	93.0	73	-0.06	-0.01	28928	18504	13.0	16.3
第三次	99.9	0.7854	10.3	93.0	74	-0.06	-0.01	29037	18573	13.0	16.4
查项目: 12		转窑焚烧	项目(Q	2) 汞		ı	-		I	A like in	>
Im to column	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.7854	10.1	92.7	71	-0.06	-0.02	28570	18325	12.8	18.1
第二次	99.9	0.7854	10.2	92.2	72	-0.06	-0.01	28774	18475	12.8	16.7
	152	-		127.12	+		_	+	A Lie	1	

报告编号: 22G01019C1 页码: 33 /44

					A. Carrier						
金查项目: 120	000 吨/年回	转窑焚烧	项目(Q	2) 除汞	以外金属		(In the IPA		THE THE	
烟气参数	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧量
四	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.7854	10.4	94.2	79	-0.07	-0.02	29414	18594	13.7	16.9
第二次	99.9	0.7854	10.5	95.2	77	-0.07	-0.02	29737	18712	13.9	15.8
第三次	99.9	0.7854	10.6	93.6	79	-0.08	-0.02	30045	18955	14.0	15.5
查项目: 120	000 吨/年热	解炉焚烧:	项目(Q	3) 颗粒:	- 物、二氧化	上 化硫、氮氧	【化物、	一氧化碳		• :1E	4,7
	大气压	截面	 流速	烟温	动压	静压。	全压	烟气流量	标干流量	含湿量	含氧量
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.7854	9.1	94.5	58	-0.04	0	25730	16448	12.7	13.8
第二次	99.9	0.7854	9.3	93.8	62	-0.05	-0.01	26295	16775	13.0	13.2
第三次	99.9	0.7854	9.5	94.6	64	-0.05	-0.01	26861	17116	12.9	13.1
查项目: 120	└─── 000 吨/年热	L 解炉焚烧:	项目(O	」 3) 氯化 ²		<u> </u>					
	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧
烟气参数	kPa	m^2	m/s	∑°C	Pa	kPa	kPa	m ³ /h	m^3/h	%	%
第一次	99.9	0.7854	9.1	94.5	58	-0.04	0	25730	16448	12.7	13.8
第二次	99.9	0.7854	9.3	93.8	62	-0.05	-0.01	26295	16775	13.0	13.2
第三次	99.9	0.7854	9.3	93.8	62	-0.05	-0.01	26295	16775	13.0	13.2
验查项目: 120	000 吨/年热	 解炉焚烧:	项目(Q	3)汞	النائم	ion.		- 10			A line
The state of the s	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧
烟气参数	kPa	m^2	m/s	°C	Pa	kPa	kPa	m ³ /h	m³/h	%	%
第一次	99.9	0.7854	9.8	94.2	70	-0.05	-0.00	27709	17576	13.4	13.5
第二次	99.9	0.7854	9.7	94.3	68	-0.05	-0.01	27398	17416	13.2	13.4
第三次	99.9	0.7854	9.5	94.1	65	-0.06	-0.02	26861	17151	12.9	13.6
金查项目: 120	000 吨/年热	 解炉焚烧:	项目(Q	3) 除汞				1			
IN F 4 W.	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量	含氧
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
	99.9	0.7854	9.6	93.9	67	-0.06	-0.02	27143	17281	13.2	13.4
第一次	17.7					S. Latter Proc.					
第二次第二次	99.9	0.7854	9.7	94.0	67	-0.06	-0.02	27398	17418	13.3	13.0

本负完

报告编号: 22G01019C1 页码: 34/44

· · · · · · · · · · · · · · · · · · ·											
佥查项目: 500	00 吨/年废剂	夜炉焚烧邛	頁 (Q4)颗粒物	、二氧化	硫、氮氧	化物、一	·氧化碳			
烟气参数	大气压	截面 m ²	流速	烟温℃	动压	静压	全压	烟气流量 m³/h		含湿量%	含氧量 %
第一次	kPa 99.9	0.6362	m/s 8.2	91.3	Pa 47	kPa -0.04	-0.01	18727	m ³ /h 12005	13.2	13.6
第二次	99.9	0.6362	8.6	91.5	52	-0.03	0.01	19703	12596	31.4	13.2
第三次	99.9	0.6362	7.6	91.3	40	-0.03	0.01	17356	11126	13.1	12.9
	V#			EIP"	40 化氢、氟	- 13%	0.02	1/330	11120	13.1	12.9
验查项目: 500	1	300				No.	A F	何欠次目	セマタ目		♦
烟气参数	大气压	截面	流速	烟温	动压	静压	全压	烟气流量		含湿量	含氧
55 V.L.	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.6362	8.1	92.1	46	-0.01	0.03	18494	11820	13.3	12.8
第二次	99.9	0.6362	7.6	92.4	41	0.00	0.04	17493	11146	13.5	13.2
第三次	99.9	0.6362	8.0	91.9	45	0.00	0.04	18288	11655	13.6	13.0
验查项目: 500				100	.00	The state of the s	w		A line in		CHI,
烟气参数	大气压	截面	流速	烟温	动压	静压	全压		标干流量	含湿量	含氧
	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%	%
第一次	99.9	0.6362	7.9	92.0	43	0.00	0.04	17992	11490	13.4	13.5
第二次	99.9	0.6362	8.2	92.6	46	0.00	0.04	18666	11887	13.5	13.1
7.72	97	1,00		02.5	-640	0.00	0.04	17650	11282	13.2	12.8
第三次	99.9	0.6362	7.7	92.5	42	0.00	0.01	17050		A 72.00 A.	
		0.6362 录	1.1	92.5	42	0.00		17030	. All		
☆ 直项目: DA		127	流速	烟温	动压	静压	全压		标干流量	含湿量	含氧
	.001 废气	汞		A	LIE BU				标干流量 m³/h	含湿量 %	含氧:
∆查项目: DA	001 废气 大气压	汞 截面	流速	烟温	动压	静压	全压	烟气流量			%
检查项目:DA 烟气参数	001 废气 大气压 kPa	汞 截面 m²	流速 m/s	烟温 °C	动压 Pa	静压 kPa	全压 kPa	烟气流量 m³/h	m ³ /h	%	14.8
金查项目: DA 烟气参数 第一次	大气压 kPa 100.1 100.1	表 截面 m ² 11.3411	流速 m/s 2.7	烟温 °C 105.7	动压 Pa 5	静压 kPa -0.02	全压 kPa -0.01	烟气流量 m³/h 111993	m ³ /h 68904	% 13.6	% 14.8 15.1
金査项目: DA烟气参数第一次第二次第三次	大气压 kPa 100.1 100.1 100.1	表 截面 m ² 11.3411 11.3411	流速 m/s 2.7 3.6 4.0	烟温 °C 105.7 106.3 105.8	动压 Pa 5 9	静压 kPa -0.02 -0.02	全压 kPa -0.01 -0.02	烟气流量 m³/h 111993 146648	m ³ /h 68904 89762	% 13.6 13.9	% 14.8 15.1
金査项目: DA烟气参数第一次第二次第三次金査项目: DA	大气压 kPa 100.1 100.1 100.1	表 截面 m ² 11.3411 11.3411 11.3411	流速 m/s 2.7 3.6 4.0	烟温 °C 105.7 106.3 105.8	动压 Pa 5 9	静压 kPa -0.02 -0.02	全压 kPa -0.01 -0.02	烟气流量 m³/h 111993 146648 161509	m ³ /h 68904 89762	% 13.6 13.9	% 14.8 15.1 15.2
金査项目: DA烟气参数第一次第二次第三次	大气压 kPa 100.1 100.1 100.1 001 废气	汞 截面 m ² 11.3411 11.3411 11.3411 除汞以外	流速 m/s 2.7 3.6 4.0	烟温 ℃ 105.7 106.3 105.8 氏化氢	动压 Pa 5 9	静压 kPa -0.02 -0.02 -0.01	全压 kPa -0.01 -0.02 -0.03	烟气流量 m³/h 111993 146648 161509	m ³ /h 68904 89762 99231	% 13.6 13.9 13.7	% 14.8 15.1 15.2 含氧]
金査项目: DA烟气参数第一次第二次第三次金査项目: DA	大气压 kPa 100.1 100.1 100.1 c001 废气 大气压 大气压 大气压 大气压 大气压 大气压	表 截面 m ² 11.3411 11.3411 11.3411 除汞以外	流速 m/s 2.7 3.6 4.0 金属、第	烟温 ℃ 105.7 106.3 105.8 私化氢	动压 Pa 5 9 11	静压 kPa -0.02 -0.02 -0.01	全压 kPa -0.01 -0.02 -0.03	烟气流量 m³/h 111993 146648 161509 烟气流量	m³/h 68904 89762 99231 标干流量	% 13.6 13.9 13.7	% 14.8 15.1 15.2 含氧: %
金査项目: DA烟气参数第一次第二次第三次金査项目: DA烟气参数	大气压 kPa 100.1 100.1 100.1 大气压 大气压 kPa t	表 截面 m ² 11.3411 11.3411 11.3411 除汞以外 截面 m ²	流速 m/s 2.7 3.6 4.0 金属、氟 流速 m/s	烟温 ℃ 105.7 106.3 105.8 私化氢 烟温 ℃	动压 Pa 5 9 11 动压 Pa	静压 kPa -0.02 -0.02 -0.01 静压 kPa	全压 kPa -0.01 -0.02 -0.03	烟气流量 m³/h 111993 146648 161509 烟气流量 m³/h	m³/h 68904 89762 99231 标干流量 m³/h	% 13.6 13.9 13.7 含湿量 %	含氧。 % 14.8 15.1 15.2 含氧。 % 15.0

报告编号: 22G01019C1 页码: 35 /44

检查项目: 丙氢	埃库贮存废	气(DA002	2 Q6) 非	甲烷总烃			8	The Property		
四层会粉	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m³/h	m ³ /h	%
第一次	100.5	1.1310	8.3	26.7	59	-0.04	0.00	33800	29640	2.90
第二次	100.5	1.1310	8.3	26.5	59	-0.04	0.00	33796	29658	2.90
第三次	100.5	1.1310	9.2	26.9	72	-0.03	0.03	37293	32685	2.90
第四次	100.5	1.1310	8.3	26.8	60	-0.04	0.00	33930	29745	2.90
金查项目: 丙ź	· 埃库贮存废	气(DA002	2 Q6) 颗	粒物			8	This live		l
四尺分型.	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m³/h	m³/h	%
第一次	100.5	1.1310	8.3	26.8	60	-0.04	0.00	33930	29745	2.90
第二次	100.5	1.1310	8.8	26.3	67	-0.04	0.01	35861	31489	2.90
第三次	100.5	1.1310	8.9	26.9	67	-0.05	0.00	36044	31585	2.90
金查项目: 丙ź	类库贮存废	气(DA002	2 Q6) 第	(化物、氯	化氢	EIDL	D)	niii.	ı	Lie
四户台州	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%
第一次	100.5	1.1310	8.3	26.7	59	-0.04	0.00	33800	29640	2.90
第二次	100.5	1.1310	8.3	26.5	59	-0.04	0.00	33796	29658	2.90
第三次	100.5	1.1310	9.2	26.9	72	-0.03	0.03	37293	32685	2.90
金查项目: 丙氢	 	气(DA002	(Q6) 氨·	、硫化氢		E.			MENE	Will in
加与会类	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
烟气参数	kPa	m^2	m/s	°C	Pa	kPa	kPa	m³/h	m ³ /h	%
第一次	100.5	1.1310	8.3	26.2	59	-0.04	0.00	33659	29566	2.90
第二次	100.5	1.1310	8.6	26.4	64	-0.04	0.01	35047	30765	2.90
第三次	100.5	1.1310	8.3	26.8	60	-0.04	0.00	33930	29745	2.90
第四次	100.5	1.1310	8.9	26.9	61	-0.05	0.00	36044	31585	2.90
<u> </u>	危险废物暂	存仓库()	DA004 Q	7) 氟化	物					O THE LET
	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
烟气参数	kPa	m^2	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%
第一次	100.5	0.5027	13.4	24.5	155	-0.11	0.00	24232	21386	2.9
219 124 1971	ON									
第二次	100.5	0.5027	13.8	24.2	166	-0.11	0.00	24974	22089	2.8

报告编号: 22G01019C1 页码: 36/44

检查项目: 4##	危险废物暂	存仓库(]	DA004 Ç	(7) 颗粒	拉物		\	In Alexander		Ä
烟气参数	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
76 (2%	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%
第一次	100.5	0.5027	13.6	25.0	161	-0.12	-0.01	24612	21658	3.0
第二次	100.4	0.5027	14.1	25.4	173	-0.11	0.01	25517	22467	2.8
第三次	100.4	0.5027	13.8	25.6	165	-0.13	-0.01	24974	21936	2.9
检查项目: 4#/	危险废物暂	存仓库(]	DA004 Ç	(7) 氯化氢						
烟气参数	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
州(少奴	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m³/h	%
第一次	100.4	0.5027	13.8	25.6	165	-0.13	-0.01	24974	21936	2.9
第二次	100.4	0.5027	13.8	25.6	165	-0.13	-0.01	24974	21936	2.9
第三次	100.4	0.5027	13.8	25.6	165	-0.13	-0.01	24974	21936	2.9
检查项目: 4##	危险废物暂	存仓库()	DA004 Ç	(7) 氨、	硫化氢、	臭气浓度			*	
烟气参数	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
州气沙奴	kPa	m^2	m/s	°C	Pa	kPa	kPa	m ³ /h	m³/h	%
第一次	100.5	0.5027	13.9	24.5	167	-0.10	0.02	25137	22202	2.9
第二次	100.5	0.5027	13.4	24.5	155	-0.11	0.00	24232	23186	2.9
第三次	100.5	0.5027	13.6	25.0	161	-0.12	-0.01	24612	21658	3.0
第四次	100.4	0.5027	14.5	25.2	181	-0.12	0.01	26241	23095	2.9
检查项目: 4##	危险废物暂	存仓库()	DA004 Q	(7) 非甲烷	总总烃	PU	.00	:15		A LIE IP
烟层会粉	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
烟气参数	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m³/h	%
第一次	100.4	0.5027	14.1	25.4	173	-0.11	0.01	25517	22467	2.8
第二次	100.4	0.5027	14.1	25.4	173	-0.11	0.01	25517	22467	2.8
第三次	100.4	0.5027	14.1	25.4	173	-0.11	0.01	25517	22467	2.8
第四次	100.4	0.5027	14.1	25.4	173	-0.11	0.01	25517	22467	2.8

报告编号: 22G01019C1 页码: 37/44

>					A Mar				
危险废物暂	存仓库(DA003 Q	8) 氨、	硫化氢					
大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
kPa	m ²	m/s	°C	Pa	kPa	kPa	m³/h	m³/h	%
100.5	0.5027	8.6	25.6	63	-0.02	0.03	15486	13592	3.2
100.5	0.5027	8.3	26.3	59	0.00	0.05	15058	13187	3.2
100.5	0.5027	8.9	25.9	68	-0.01	0.04	16079	14098	3.2
100.5	0.5027	8.7	26.3	65	-0.01	0.04	15720	13766	3.2
 危险废物暂	 ·存仓库()	DA003 Q	8) 非甲	 烷总烃		8	A Principle	THE LEE	
1			Till ich	`	静压	全压	烟气流量	标干流量	含湿量
kPa	m^2	m/s	°C	Pa	kPa	kPa	m³/h	m ³ /h	%
100.5	0.5027	8.6	25.6	63	-0.02	0.03	15486	13592	3.2
100.5	0.5027	8.6	25.6	63	-0.02	0.03	15486	13592	3.2
100.5	0.5027	8.5	26.1	62	-0.02	0.03	15384	13479	3.2
100.5	0.5027	8.5	26.1	62	-0.02	0.03	15384	13479	3.2
	A LABORA		- 30				, As	A little	
. A.C.	1		152 14.	T		全压	烟气流量		含湿量
kPa	m ²	m/s	°C	Pa	kPa	kPa	m^3/h	m^3/h	%
100.5	0.5027	8.3	26.3	59	0.00	0.05	15058	13187	3.2
100.5	0.5027	8.0	26.8	55	-0.00	0.04	14490	12668	3.2
100.5	0.5027	7.6	11/2		0.01	0.05	13818		3.2
	130			132		Bill	A REPORT		
1	All In				静乐	全压	烟气流量	标干流量	含湿量
kPa	m^2	m/s	°C	Pa	kPa	kPa	m ³ /h	m^3/h	%
100.5	0.5027	8.6	25.6	63	-0.02	0.03	15486	13592	3.2
100.5	0.5027	8.5	26.1	62	-0.02	0.03	15384	13479	3.2
100.5	0.5027	8.6	25.9	64	0.01	0.05	15624	13701	3.2
		123 1		A THE	<u> </u>		Ti.		A Marian
1					静压	全压	烟气流量	标干流量	含湿量
kPa	m^2	m/s	°C	Pa	kPa	kPa	m ³ /h	m^3/h	%
100.5	0.0962	12.9	20.6	145	-0.10	0	4464	4006	2.6
100.5	0.0962	12.8	21.3	143	-0.10	0	4429	3965	2.6
i .	1		152	1	. 11/2	18			
100.5	0.0962	12.7	11.5	141	-0.10	0	4409	3945	2.6
	大气压 kPa 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5	大气压 截面 m² 100.5 0.5027 100.5 0	大气压 截面 流速 kPa m² m/s 100.5 0.5027 8.6 100.5 0.5027 8.9 100.5 0.5027 8.9 100.5 0.5027 8.7 危险废物暂存仓库(DA003 Q 大气压 截面 流速 kPa m² m/s 100.5 0.5027 8.6 100.5 0.5027 8.5 危险废物暂存仓库(DA003 Q 大气压 截面 流速 kPa m² m/s 100.5 0.5027 8.0 100.5 0.5027 8.0 100.5 0.5027 7.6 危险废物暂存仓库(DA003 Q 大气压 截面 流速 kPa m² m/s 100.5 0.5027 8.6 100.5 0.5027 8.6 100.5 0.5027 8.6 100.5 0.5027 8.6 100.5 0.5027 8.6 100.5 0.5027 8.6 100.5 0.5027 8.6 100.5 0.502	大气压 截面 流速 烟温 kPa m² m/s °C 100.5 0.5027 8.6 25.6 100.5 0.5027 8.9 25.9 100.5 0.5027 8.9 25.9 100.5 0.5027 8.7 26.3 危险废物暂存仓库(DA003 Q8) 非甲 大气压 截面 流速 烟温 kPa m² m/s °C 100.5 0.5027 8.6 25.6 100.5 0.5027 8.6 25.6 100.5 0.5027 8.6 25.6 100.5 0.5027 8.5 26.1 100.5 0.5027 8.5 26.1 危险废物暂存仓库(DA003 Q8) 氟化物 °C 100.5 0.5027 8.0 26.8 100.5 0.5027 8.0 26.8 100.5 0.5027 7.6 26.1 危险废物暂存仓库(DA003 Q8) 颗粒粒 大气压 截面 应 C 100.5 0.5027 8.6 25.6 100.5	大气压 kPa 截面 m² 流速 m/s 烟温 °C 动压 Pa 100.5 0.5027 8.6 25.6 63 100.5 0.5027 8.3 26.3 59 100.5 0.5027 8.9 25.9 68 100.5 0.5027 8.7 26.3 65 危险废物暂存仓库(DA003 Q8) 非甲烷总烃 大气压 截面 流速 烟温 动压 水压 kPa m² m/s °C Pa 100.5 0.5027 8.6 25.6 63 100.5 0.5027 8.6 25.6 63 100.5 0.5027 8.5 26.1 62 100.5 0.5027 8.5 26.1 62 危险废物暂存仓库(DA003 Q8) 氟化物、氯化氢 大气压 截面 流速 烟温 动压 水Pa 100.5 0.5027 8.0 26.8 55 100.5 0.5027 8.6 25.6 63 100.5 0.5027 8.6 25.6 63	大气压 截面 流速 烟温 动压 静压 kPa m² m/s °C Pa kPa 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.9 25.9 68 -0.01 100.5 0.5027 8.7 26.3 65 -0.01 危险废物暂存仓库(DA003 Q8)非甲烷总烃 大气压 截面 流速 烟温 动压 静压 kPa m² m/s °C Pa kPa 100.5 0.5027 8.5 26.1 62 -0.02 100.5 0.5027 8.5 26.1 62 -0.02 100.5 0.5027 8.3 26.3 59 0.00 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.5 26.1 62 -0.02 100.5 0.5027 8.5 26.1 62 -0.02 100.5 0.5027 8.3 26.3 59 0.00 100.5 0.5027 8.3 26.3 59 0.00 100.5 0.5027 8.3 26.3 59 0.00 100.5 0.5027 8.0 26.8 55 -0.00 100.5 0.5027 8.0 26.8 55 -0.00 100.5 0.5027 7.6 26.1 50 0.01 100.5 0.5027 7.6 26.1 50 0.01 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.0 26.8 55 -0.00 100.5 0.5027 8.0 26.8 55 -0.00 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.6 25.6 63 -0.02 100.5 0.5027 8.6 25.9 64 0.01 100.5 0.5027 8.6 25.9 64 0.01 100.5 75水站排气筒 氨、硫化氢	大气压 截面 流速 烟温 动压 静压 全压 kPa m² m/s °C Pa kPa kPa 100.5 0.5027 8.6 25.6 63 -0.02 0.03 100.5 0.5027 8.9 25.9 68 -0.01 0.04 100.5 0.5027 8.7 26.3 65 -0.01 0.04 60 医皮物暂存仓库 (DA003 Q8) 非甲烷总烃 ***	大气压 kPa 截面 m² 流速 m/s 烟温 °C 动压 Pa 静压 kPa 全压 m²/h 烟气流量 m²/h 100.5 0.5027 8.6 25.6 63 -0.02 0.03 15486 100.5 0.5027 8.3 26.3 59 0.00 0.05 15058 100.5 0.5027 8.9 25.9 68 -0.01 0.04 16079 100.5 0.5027 8.7 26.3 65 -0.01 0.04 15720 危险废物暂存仓库(DA003 Q8) 非甲烷总烃 大气压 截面 流速 烟温 动压 静压 全压 烟气流量 水口 m² m/s °C Pa kPa kPa m³/h 100.5 0.5027 8.6 25.6 63 -0.02 0.03 15486 100.5 0.5027 8.5 26.1 62 -0.02 0.03 15384 100.5 0.5027 8.5 26.1 62 -0.02 0.03 15384 100.5<	大气压 截面 流速 烟温 动压 静压 全压 烟气流量 标干流量 m³/h m³/h

报告编号: 22G01019C1 页码: 38/44

检查项目: DA	.001-0 热解	炉出渣排	口 颗粒物	勿	45		à	WEIP L		i.
烟气参数	大气压	截面	流速	烟温	动压	静压	全压	烟气流量	标干流量	含湿量
州(少奴	kPa	m ²	m/s	°C	Pa	kPa	kPa	m ³ /h	m ³ /h	%
第一次	100.5	0.6362	6.0	30.2	30	-0.02	0	13727	11791	3.8
第二次	100.5	0.6362	6.1	30.5	32	-0.02	0	14015	12026	3.8
第三次	100.5	0.6362	5.8	30.1	29	-0.01	0	13295	11425	3.8

检测点位: DA001	废气 2022 年 7 月 2	20 日 11:04~13:04	二噁英类	A literature	
参数	结果	单位	参数	结果	单位
大气压	100.1	kPa	含氧量	15.5	%
截面	11.3411	m^2	烟温	106.6	C
流速	3.3	m/s	含湿量	13.8	%
动压	7	Pa	烟气流量	134324	m³/h
静压	-0.03	kPa	标干流量	82244	m³/h

检测点位: DA001	废气 2022 年 7 月 2	20 日 13:26~15:26	二噁英类	-	A September 1
参数	结果	单位	参数	结果	单位
大气压	100.1	kPa	含氧量	15.7	%
截面	11.3411	m ²	烟温	107.2	$^{\circ}$
流速	2.6	m/s	含湿量	14.0	%
动压	4	Pa	烟气流量	105744	m³/h
静压	-0.01	kPa	标干流量	64515	m³/h

*		A Park		V	·
检测点位: DA00	1 废气 2022 年 7 月 2	20 日 15:50~17:50 二	二噁英类		
参数	结果	单位	参数	结果	单位
大气压	100.1	kPa	含氧量	15.8	%
截面	11.3411	m ²	烟温	107.9	$^{\circ}$ C
流速	3.1	m/s	含湿量	14.1	% A little west
动压	11	Pa	烟气流量	126158	m³/h
静压	-0.03	kPa	标干流量	76692	m³/h

报告编号: 22G01019C1 页码: 39/44

(3) 噪声现场气象参数

1,000	Van 11 - 11.	and the second s		A 549		
检测时间: 2022年	7月15日 昼间	The state of the s		• 5%.	A	MEILER
参数	Ţ.	结果	单位	参数	结果	单位
天气状	況	晴		风速	2.0	m/s
检测时间: 2022年	7月15日 夜间		A line len	ill.		Es inc.
参数		结果	单位	参数	结果	单位
天气状	况	晴		风速	2.1	m/s
		*	**本页完***			

报告编号: 22G01019C1 页码: 40/44

2.4 仪器信息

DCHH H 10.		
仪器名称	仪器编号	仪器型号
水质多参数仪	12100920050007	SX836
环境空气颗粒物综合采样器	12100922070007	ZR-3922
环境空气颗粒物综合采样器	12100922070010	ZR-3922
环境空气颗粒物综合采样器	12100922070011	ZR-3922
环境空气颗粒物综合采样器	12100922070012	ZR-3922
便携式采气筒	12100919040011	ZY037
便携式采气筒	12100919040012	ZY037
便携式采气筒	12100919040013	ZY037
便携式采气筒	12100919040014	ZY037
智能综合采样器	12100919060014	ADS-2062E(2-0)
便携式采气筒	12100919040015	ZY037
便携式采气筒	12100919040016	ZY037
智能大气采样器	12100919060003	ADS-2062E 2-0
智能综合采样器	12100919060011	ADS-2062E(2-0)
智能综合采样器	12100919060008	ADS-2062E(2-0)
声级计	12100418110001	AWA6228+
低浓度自动烟尘烟气分析仪	12100921060010	ZR-3260D
声校准器	12100417020007	AWA6221A
双路烟气采样器	12100921060012	ZR-3712
负压式采气桶	12100920070004	ZY009
负压式采气桶	12100920070005	ZY009
自动烟尘烟气综合测试仪	12100917110001	ZR-3260
双路烟气采样器	12100918090013	ZR-3710
自动烟尘(气)测试仪	12100918100002	3012H
低浓度自动烟尘烟气分析仪	12100921060001	ZR-3260D
双路烟气采样器	12100922070004	ZR-3712
负压式采气桶	12100920070004	ZY009
	, init	

报告编号: 22G01019C1 页码: 41/44

仪器名称	仪器编号	仪器型号
负压式采气桶	12100920070001	ZY009
手持式气象仪	12100418110005	NK5500
废气二噁英采样器	12100918111001	ZR-3720
火焰原子吸收分光光度计	12100119070001	AA-7020
原子荧光光度计	12100121080001	BAF-2000
原子荧光分光光度计	12100119110001	AFS-9710
原子荧光光度计	12100120120001	AFS-8530
高分辨气相色谱-高分辨磁质谱仪	12100219121001	JMS-800D
溶解氧测量仪	12100520110001	DO 2700
生化培养箱	12100817020005	SHP-150
氟离子浓度计	12100517040001	MP519
气相色谱仪(非甲烷总烃)	12100217020002	GC 7900
离子色谱仪	12100217010001	ICS-1100
低浓度称量恒温恒湿设备	12100718090001	JNVN-800S
氟离子浓度计	12100517080003	MP519
十万分位天平	12100717020004	MS105DU
ICP.MS 电感耦合等离子体质谱仪	12100118090001	NexION 2000B
紫外可见分光光度计	12100117020002	UV-1800PC
红外测油仪	12100117020001	OIL 480
压力蒸汽灭菌器	12100819080001	DSX-18L(非医疗)
万分位天平	12100717020002	ME 204
电热恒温鼓风干燥箱	12100819050004	DHG-9070A
紫外分光光度计	12100119060001	UV-1100
50L 立式灭菌器	12100820110001	LDZX-50L
紫外分光光度计	12100121010001	UV-2600i
		The state of the s

报告编号: 22G01019C1 页码: 42/44

2.5 检测标准

控制項目 松測病性 松測病性 名類 水质 名類 水质 名類 水质 名詞 水质 名詞 水质 名詞 水质 名詞 名詞 名詞 名詞 名詞 名詞 名詞 名	2.5 位测	外1年		A PARTY OF THE PAR	
思譯物 水质 悬浮物的测定 重量法 GB/T 11901-1989 总錄 水质 总翰的测定 钼酸铵分光光度法 GB/T11893-1989 水质 海窩和总氯的测定 N,N-二乙基-1,4-苯二胺分光光度法 HJ 586-2010 化学需氧量 高氯废水 化学需氧量的测定 氯气校正法 HJ/T 70-2001 不质 右油类 和3種物油类的测定 紅外分光光度法 HJ 637-2018 pH 水质 pH 值的测定 电极法 HJ 1147-2020 神 水质 家	样品类别	检测项目	A LILE IN LINE	检测标准	A Price
总磷 水质 总翰的测定 钼酸铵分光光度法 GB/T11893-1989 总余氮 (总氮) 水质 游离氮和总氮的测定 N,N-二乙基-1,4-米二胺分光光度法 IIJ 586-2010 化学需氧量 高氮废水 化学需氧量的测定 氮气校正法 HJ/T 70-2001 不	A Little	氨氮	水质 氨氮的测	定 纳氏试剂分光光度法 HJ 5:	35-2009
总余氣(总氣) 水质 海禽氣和总氣的测定 N.N.二乙基-1.4-苯二胺分光光度法 HJ 586-2010 化学需氧量 高氯废水 化学需氧量的测定 氯气校正法 HJ/T 70-2001 不加类 水质 石油类和动植物油类的测定 紅外分光光度法 HJ 637-2018 pH 水质 pH 值的测定 电极法 HJ 1147-2020 碰 水质 森 、		悬浮物	水质 悬浮物的	测定 重量法 GB/T 11901-1989	A
日 586-2010		总磷	水质 总磷的测	定 钼酸铵分光光度法 GB/T118	93-1989
不過类		总余氯 (总氯)		I总氯的测定 N,N-二乙基-1,4-苯	二胺分光光度法
日祖李 HJ 637-2018 pH 水质 pH 值的测定 电极法 HJ 1147-2020 神 水质 pH 值的测定 原子荧光法 HJ 694-2014 龙 水质 和、铋、锑的测定 原子荧光法 HJ 694-2014 龙 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987		化学需氧量	高氯废水 化学	:需氧量的测定 氯气校正法 HJ/	Γ 70-2001
度水		石油类	424	1动植物油类的测定 红外分光光	度法
废水		рН	水质 pH 值的	测定 电极法 HJ 1147-2020	
療水 留 水质 铜、锌、铅、镉的测定 原子吸收分光光度法 GB/T 7475-1987			水质汞、砷、硝	西、铋、锑的测定 原子荧光法	НЈ 694-2014
日本		A little	<u> </u>		. N. A.
特回 水质 总铬的测定 二苯碳酰二肼分光光度法 GB/T 7466-1987 水质 铬的测定 火焰原子吸收分光光度法 HJ 757-2015 水质 充价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987 水质 五日生化需氧量 水质 五日生化需氧量 水质 五日生化需氧量 (BODs)的测定 稀释与接种法 HJ 505-2009 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法 HJ 636-2012 氟化物 水质 氟化物的测定 离子选择电极法 GB/T 7484-1987 水和废水监测分析方法 (第四版 增补版) 国家环保总局 2002 钼锑抗分光光度法 非甲烷总烃 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱 HJ 604-2017 臭气浓度 空气质量 恶臭的测定 三点比较式臭袋法 GB/T 14675-1993	废水		Q		
格印 水质 铬的测定 火焰原子吸收分光光度法 HJ 757-2015 木质 六价铬的测定 二苯碳酰二肼分光光度法 GB/T 7467-1987 五日生化需氧量 水质 五日生化需氧量(BODs)的测定 稀释与接种法 HJ 505-2009 总氮 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法 HJ 636-2012			水质 总铬的测	定 二苯碳酰二肼分光光度法	E Milleri
方价铬	in the	格[2]		Hillian I	757-2015
出口生化需氧量 HJ 505-2009 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法 HJ 636-2012 氟化物 水质 氟化物的测定 离子选择电极法 GB/T 7484-1987 水和废水监测分析方法 (第四版 增补版) 国家环保总局 2002 钼锑抗分光光度法 非甲烷总烃 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色语 HJ 604-2017 臭气浓度 空气质量 恶臭的测定 三点比较式臭袋法 GB/T 14675-1993 氨 环境空气和废气 氮的测定 纳氏试剂分光光度法 HJ 533-2009 《空气和废气监测分析方法》(第四版 增补版)国家环保总局 20年,亚甲基蓝分光光度法 3.1.11 (2) 氯化氢 环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016 环境空气 总悬浮颗粒物的测定 重量法 GB/T 15432-1995 及修单 (生态环境部公告 2018 年第 31 号) 环境空气 氟化物的测定 滤膜采样氟离子选择电极法		六价铬			
思氮 HJ 636-2012		五日生化需氧量	77	:需氧量(BOD5)的测定 稀释与接	种法
水和废水监测分析方法(第四版 増补版)国家环保总局 2002 钼锑抗分光光度法 非甲烷总烃 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱 HJ 604-2017 臭气浓度 空气质量 恶臭的测定 三点比较式臭袋法 GB/T 14675-1993		总氮	1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	定 碱性过硫酸钾消解紫外分光	光度法
(權輕盐) 相锑抗分光光度法 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色语 HJ 604-2017 臭气浓度 空气质量 恶臭的测定 三点比较式臭袋法 GB/T 14675-1993		氟化物	水质 氟化物的	测定 离子选择电极法 GB/T 74	84-1987
#甲烷总烃 HJ 604-2017		磷酸盐	The less		京环保总局 2002 年
爱 环境空气和废气 氨的测定 纳氏试剂分光光度法 HJ 533-2009 《空气和废气监测分析方法》(第四版 增补版)国家环保总局 26年,亚甲基蓝分光光度法 3.1.11(2)	A William	非甲烷总烃		、甲烷和非甲烷总烃的测定 直	接进样-气相色谱法
废气(无组织)		臭气浓度	空气质量 恶臭	的测定 三点比较式臭袋法 GB/	Т 14675-1993
废气(无组织) 年,亚甲基蓝分光光度法 3.1.11 (2) 氯化氢 环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016 颗粒物 环境空气 总悬浮颗粒物的测定 重量法 GB/T 15432-1995 及修单(生态环境部公告 2018 年第 31 号) 氧化物 环境空气 氟化物的测定 滤膜采样氟离子选择电极法		氨	环境空气和废气	气 氨的测定 纳氏试剂分光光度	法 HJ 533-2009
颗粒物 环境空气 总悬浮颗粒物的测定 重量法 GB/T 15432-1995 及修单(生态环境部公告 2018 年第 31 号) 环境空气 氟化物的测定 滤膜采样氟离子选择电极法	废气(无组织)	硫化氢			国家环保总局 200
单(生态环境部公告 2018 年第 31 号) 环境空气 氟化物的测定 滤膜采样氟离子选择电极法		氯化氢	环境空气和废	气 氯化氢的测定 离子色谱法 H	IJ 549-2016
無化物 制		颗粒物			15432-1995 及修改
113 733-2016		氟化物	环境空气 氟化 HJ 955-2018	物的测定 滤膜采样氟离子选择	电极法

报告编号: 22G01019C1 页码: 43 /44

THE LEW		A lier
样品类别	检测项目	检测标准
	氟化氢	固定污染源废气 氟化氢的测定 离子色谱法 HJ688-2019
A line level	颗粒物	固定污染源废气 低浓度颗粒物的测定 重量法 HJ 836-2017
	二氧化硫	固定污染源废气 二氧化硫的测定 定电位电解法 HJ 57-2017
	氮氧化物	固定污染源废气 氮氧化物的测定 定电位电解法 HJ 693-2014
	一氧化碳	固定污染源废气 一氧化碳的测定 定电位电解法 HJ 973-2018
A line low	氯化氢	环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016
	氨	环境空气和废气 氨的测定 纳氏试剂分光光度法 HJ 533-2009
A litilli	硫化氢	空气和废气监测分析方法(第四版 增补版)国家环保总局 2003 年,亚甲基蓝分光光度法 5.4.10(3)
	氟化物	大气固定污染源 氟化物的测定 离子选择电极法 HJ/T 67-2001
	臭气浓度	空气质量 恶臭的测定 三点比较式臭袋法 GB/T 14675-1993
A William	非甲烷总烃	固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法 HJ 38-2017
废气(有组织)	表示表	原子荧光光度法《空气和废气监测分析方法》(第四版增补版) 国家环境保护总局(2003) 5.3.7(2)
A life is in	砷	A life in the second se
	铬	
	铊	
- 10	铅	
A WELL	镉	
	锑	空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质 谱法 HJ 657-2013 及修改单
	镍	MIA II 037 2013 X BOX T
133	铜	
04.1.1	锰	A life in the second se
	锡	
	钴	
V	二噁英类	环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.2-2008
噪声	厂界噪声	工业企业厂界环境噪声排放标准 GB 12348-2008
	131.50	

报告结束

报告编号: 22G01019C1 页码: 44/44

___ 声明 ___

- 1.检测地点: 苏州工业园区唯新路 58 号东区 8 幢。
- 2.报告(包括复制件)若未加盖"检验检测专用章"和批准人签字,一律无效。
- 3.本报告不得擅自修改、增加或删除,否则一律无效。
- 4.复制的报告未重新加盖"检验检测专用章"无效。
- 5.如对报告有疑问,请在收到报告后15个工作日内提出。
- 6.江苏微谱检测技术有限公司仅对送检样品的测试数据负责,对送检样品来源、客户送样未按技术规范保存样品导致的结果偏差不负责,委托方对送检样品及其相关信息的真实性负责,采样样品的检测结果只代表检测时污染物排放状况。
- 7.除客户特别声明并支付样品管理费以外,所有样品超过规定的时效期均不再留样。

